## Convergence to the Beveridge Curve

$\frac{\text { Law of molin of unemployment nate } u \text { : }}{0}$

$$
\dot{u}(t)=-[\lambda+f] u(t)+\lambda
$$

job-fimding ath

$$
\begin{aligned}
& \quad \text { Critical priml: } \bar{u} \text { such that } \quad \dot{u}=0 \\
& \begin{aligned}
& \dot{u}=0 \Rightarrow-(\lambda+\rho) \bar{u}+\lambda=0 \\
& \Rightarrow \bar{u}=\frac{\lambda}{\lambda+\rho} \\
& \Rightarrow \\
& u(\theta)=\frac{\lambda}{\lambda+\rho(\theta)}
\end{aligned}
\end{aligned}
$$

bevenidge unve.

$$
\begin{aligned}
& \lambda+f(\theta)=\frac{\lambda}{u} \\
& f(\theta)=\frac{\lambda-\lambda u}{u} \\
& \mu \theta^{1-\eta}=\frac{\lambda-\lambda u}{u} \\
& \theta=\left[\frac{\lambda-\lambda u}{\mu \cdot u}\right]^{\frac{1}{1-\eta}}=\frac{u}{u}
\end{aligned}
$$

$$
\begin{aligned}
& v=\left[\frac{\lambda-\lambda u}{\mu u} \cdot u^{1-\eta}\right] \frac{1}{1-\eta} \\
& v=\left[\frac{\lambda-\lambda_{u}}{\nu u \eta}\right]^{\frac{1}{1-\eta}}
\end{aligned}
$$

Beverilge unve: $v(u) w / \frac{d v}{d r}<0$
Cavergence of $u(t)$ to $u(\theta)$

Solution:

$$
\dot{u}(t)+\left(\frac{\lambda}{\text { gap }}+f\right) u(t)=\lambda \text { imitial gal shinim }
$$

$$
[u(t)-u(\theta)]=[u(0)-u(\theta)] e^{-(\lambda+\rho) t}
$$

$$
\Rightarrow u(t)=u(\theta)+[u(0)-u \mid \theta)] e^{-(\lambda+\rho) t}
$$

$$
\dot{u}(t)=-(x+\rho)[u(0)-u(\theta)] e^{-(x+\rho) x}
$$

$$
u(t)=-(\lambda+\rho) \times[u(t)-u(\phi)]
$$

$$
\dot{u}(t)+(\lambda+\rho) u(t)=(\lambda+\rho) u(\theta)=-1
$$

differential equation is satísfied

+ satisfy imilial candilia at $t=0$
Intesputation: Gap b/wr $u$ (t) \& Bevendge anve ohinks at rate $(\lambda+\ell)$
$\Rightarrow \quad \lambda+f$ is apeeA al whid umemployment converges ro beveridge unve.
In us: - $\lambda \approx 3 \%$ per marth
- $\delta \approx 59 \%$ fen manth

$$
\Rightarrow \lambda+\rho \approx 62 \% \text { per month }
$$

Half time: time it fakes Io unempls yment nate ro care $1 / 2$ distana $r^{-}$ Bevenidge wnce

$$
\frac{\ln (2)}{\lambda+f}=\frac{0.69}{0.62} \approx 1.2 \text { month. }
$$

In a quartes, $(1 / 2)^{3}=1 / 8$ of imitial $\sim 10 \%$
dibtance $w /$ beseridge cunve is loft.
$\Rightarrow$ Convergence to Berveridge cmer is wey fatt $b / c d, f$ are large $\Rightarrow$ Unemploymert nahe always m Bevridye ance

$$
u=u(\theta)=\frac{\lambda}{\lambda+(\mid \theta)}
$$

