Solving the Two-Market Model

Pascal Michaillat https://pascalmichaillat.org/c2/

Solve the two-markel model (x, θ) such that

$$
\begin{align*}
& \begin{cases}y^{d}(x)=y^{s}(x, \theta) & (A D=A s) \\
l^{d}(x, \theta)=l^{s}(\theta) & (L D=L S)\end{cases} \\
& -y^{d}(x)=y^{5}(x, \theta) \\
& \Leftrightarrow \frac{x^{\varepsilon}}{[1+\tau|x|]^{\kappa-1}} \cdot \frac{\mu}{\rho}=f(x) \cdot a \cdot\left[\frac{\hat{f}(\theta) \cdot l}{1+\hat{\tau}(\theta)}\right]^{\alpha} \\
& \Leftrightarrow f(x)[1+\tau(x)]^{\varepsilon-1}=\frac{x^{\varepsilon} \sim}{p a h^{\alpha}} \cdot\left[\frac{1+\hat{z}(\theta)}{\hat{f}(\theta)}\right]^{\alpha} \text { (p) } \\
& -1^{d}(x, \theta)=1^{s}(\theta) \\
& \Leftrightarrow\left[\frac{f(x) a \alpha}{w / \rho}\right]^{1 / 1-\alpha}\left[\frac{1}{1+\tilde{\tau}_{(\alpha)}}\right]^{\alpha / 1-\alpha}=j^{1}(\theta) \cdot h \\
& \Leftrightarrow f(x)=\frac{\omega / \beta \cdot h^{1-\alpha}}{a \alpha} \hat{f}(\alpha)[1+\hat{\tau}(\beta)]^{\alpha} \tag{L}
\end{align*}
$$

What do me learn from (L)

$$
\begin{aligned}
& \text { What do we learn from (L): } \\
& x=x^{L}(\theta)=f^{-1}\left(\frac{\omega / p}{a \alpha} h^{1-\alpha} \hat{f}(\theta)^{1-\alpha}\left[1+\hat{\tau}_{\lambda}(\alpha)\right]^{\alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (\rho))(L) \Leftrightarrow[1+\tau(x)]^{\varepsilon-1}=\frac{x^{\varepsilon} N \alpha \alpha}{\rho^{\prime} \cdot \alpha \cdot l \cdot \frac{w}{p} h^{h} \alpha} \cdot \frac{1}{\hat{\rho}(\theta)} \\
& \Leftrightarrow \quad \tau(x)=\left[\frac{x^{\varepsilon} N<}{w \cdot h} \cdot \frac{1}{\jmath}(\theta)\right]^{\frac{1}{\varepsilon-1}}-1 \\
& \Leftrightarrow x=x^{p}(\theta)=\tau^{-1}\left[\left(\frac{x^{\natural} \mu \alpha}{w \cdot h} \cdot \frac{1}{\rho^{\eta}(\theta)}\right)^{\frac{1}{\varepsilon}-1}-1\right]
\end{aligned}
$$

x^{P} is otricthy δ im θ

$$
-x^{P}(0)=x^{m} b / c t\left(x^{m}\right)=+\infty
$$

Depenching m whithe $\left(\frac{x^{\varepsilon} \mu \alpha}{w \cdot l}\right)^{1 / \varepsilon-1}-$ is $>0 a<0$.

$$
\begin{aligned}
& \text { I: }\left(\frac{x^{k} \mu \alpha}{w \cdot h}\right)^{1 / h-1}-1 \ggg 1 \\
& \text { Then } \lim _{\theta \rightarrow \infty} x^{p}(\theta)=x^{p} \text { ot } \\
& t\left(x^{p}\right)=\lambda^{1 / h-1} a \quad x^{p}=\tau^{-1}\left(\lambda^{1 / h-1}-1\right)
\end{aligned}
$$

V. 121 There is θ^{f} such that

$$
\left.\begin{array}{rl}
& \left(\frac{x^{\kappa} \mu \alpha}{w \cdot h} \cdot \frac{1}{\hat{\rho}}\left(\sigma^{p}\right)\right.
\end{array}\right)^{1 / \omega^{-1}}=1 .
$$

then $x^{p}\left(\phi^{p}\right)=\tau^{-1}(0)=0$

