Matching on the Labor and Product Markets

Pascal Michaillat https://pascalmichaillat.org/c2/

Product manket: - Houscholds canny v visits

- Finms provide k services (capacily)
- Matching function detumins \#
tnades:

$$
y=m(k, v)
$$

Use CES malching function:

$$
y=\left[k^{-\gamma}+v^{-r}\right]^{-\frac{1}{r}} \quad r>0
$$

- Each visil cat $\rho>0$ savices

Labn man het:

- Finmos pat \hat{v} vacancies
- There are h wakers is laba face \rightarrow all imitially unemgloyed - Mathing function determine \#/
of hines:

$$
l=\hat{m}(h, \hat{v})
$$

Use CES matching function:

$$
e=\left[h^{-\hat{\gamma}}+\hat{v}^{-\hat{\gamma}}\right]^{-1 / \hat{\gamma}} \hat{\gamma}>0
$$

- Eachcacancy requins $\hat{\rho}$ recuiters

Markit tightmesses: - Product manket tighlmess:

$$
x=v / k
$$

- Labr market tightmes:

$$
\theta=\hat{v} / h
$$

Traling probabilítics:

- Buy ing probabilily $g(x)$
- Selling probability $f(x)$
- Reconiting probability $\hat{q}(\theta)$
- Tobfinding probubility $\hat{f}(\theta)$

Eaprosing of pribabilitios.

$$
\begin{array}{r}
\hat{f}(\theta)=\frac{l}{h}=\frac{\left[h^{-\hat{r}}+\hat{v}^{-} \hat{\gamma}\right]^{-1 / \hat{\gamma}}}{h}=\left[1+\theta^{-\hat{r}}\right]^{-1 / \gamma} \\
\hat{q}(\theta)=\frac{l}{\hat{v}}=\frac{\left[h^{-\hat{\gamma}}+\hat{v}^{-\hat{\gamma}}\right]^{-1 / \hat{r}}}{\hat{v}}=\left[\theta^{\hat{r}}+1\right]^{-1 / \gamma}
\end{array}
$$

