General Structure of the Model Solution

Pascal Michaillat https://pascalmichaillat.org/c2/

Solution to the macio malching model
Need to solue a 2×2 syotem $\left\{\begin{array}{l}2 \text { variable: } y \text { ágregak demand, aggregate supply } \\ 2 \text { equations: ag }\end{array}\right.$

The ooluting is gioun by

$$
\left\{\begin{array}{l}
y=\sigma(x)\left[\begin{array}{l}
f(x) \cdot k+N / p] \\
y=f(x) \cdot k
\end{array}\right. \\
y / 1-\sigma=\frac{M P P}{1-M P S}
\end{array}\right.
$$

As anve $y^{S}(x)=f(x) \cdot k$
$\frac{A D \text { anne: }}{(\text { pure) }} y^{d}(x)=\frac{n(x)}{1-\sigma(x)} \cdot \frac{N}{\rho}=\frac{x^{\varepsilon}}{\left[1+\tau(x)^{i-1}\right.} \cdot \frac{N}{\rho}$ $\frac{\text { Behaviaal unve: }}{\text { (behaviaal) }} y^{b}(x)=\sigma(x)\left[y^{S}(x)+\frac{\mu}{p}\right]$

$$
f^{b}(x)=\sigma(x) y^{S}(\alpha)+[1-\sigma(x)] y^{d}(x)
$$

ABehavia of hourchold is limear combination f Spending supply \& demand $b /<\left\{\begin{array}{c}\sigma \in(0,1) \\ 1-\sigma \in(0,1)\end{array}\right.$

Two equivalent farmulation of the orlulion: (RA) HA)

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=y^{b}(x) \\
y=y^{s}(x)
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
y=\sigma(x) y^{5(x)}+[n-\sigma(x)] y^{d}(x) \\
y=y(x)
\end{array}\right. \\
& \left\{\begin{array}{l}
y=y^{S(x)} \\
y^{\prime}(x)=\sigma(x) f^{S}(x)+[1-6(x)] y^{d}(x)
\end{array}\right. \\
& \left(=1 \quad \begin{cases}y=y^{S}(x) & \text { oulput giem by As } \\
y^{S}(x)-y^{d}(x) L \text { tighlmex st } A S=A D\end{cases} \right.
\end{aligned}
$$

