Solving the Household's Problem

Pascal Michaillat https://pascalmichaillat.org/c2/

Household's problem (concave maximization problem):

$$
\max _{c} \frac{x}{1+x} c^{\frac{\varepsilon-1}{\varepsilon}}+\frac{1}{1+x}\left[\frac{N}{p}+\rho \cdot k-(1+\pi) \cdot c\right]^{\frac{\varepsilon-1}{\varepsilon}}
$$

Necesany \& sufficient iadition fa the optimal c (c madimizing utility): dericatiore $=0$
Rere: $\frac{x}{1+x} \cdot \frac{\varepsilon-1}{\varepsilon}, c^{-\frac{1}{\varepsilon}}$

$$
\begin{aligned}
& -[1+\tau(x)] \frac{1}{1+x} \frac{\varepsilon-1}{7 / \varepsilon}[-\ldots]^{-1 / \varepsilon}=0 \\
& x c^{-1 / \varepsilon}=[1+\tau(x)][m / \rho]^{-1 / \varepsilon}
\end{aligned}
$$

∞ Mu forvice $\quad \infty$ Mu of real mavex

$$
\begin{aligned}
c^{-1 / \varepsilon} & =\frac{1+\tau(x)}{x}(m / \rho)^{-1 / \varepsilon} \\
c & =\left[\frac{x}{1+\tau(x)}\right]^{\varepsilon} \cdot \frac{m}{\rho}
\end{aligned}
$$

- c: consumption of service
- \# sencics purdiared by hruochold : y

$$
y=[1+\tau(x)] c
$$

- \# virits by hrusehodd : v

$$
v=y / q(x)=c \cdot[1+\tau(x)] / q(x)
$$

