Urn-Ball Matching Function

Pascal Michaillat https://pascalmichaillat.org/c2/

Mouket with B buyers \& S sellens
Example: restannants \& lemch customers
\leq restamants (one rable, one meal)
B lunch austomens (one real at lunch)
Gme restamant: $\frac{1}{5}: \begin{gathered}\text { proba. to get are speufic } \\ \text { custamer }\end{gathered}$
1- 1/s: proba to NOT get customer
$\left(1-\frac{1}{5}\right)^{B}:$ proba to get No customer
$1-(1-1 / s)^{B}=\begin{gathered}\text { proba to to grt AT LEAST ONE }\end{gathered}$

- proba to xll a meal
$=$ eapected \#t meals sold by ore restaunant
Expected \# meals sold by dl restamants

$$
S \times\left[1-\left(1-\frac{1}{S}\right)^{B}\right]=\# \text { rradeos } / \text { meads oold }
$$

Simplification $\left(1-\frac{1}{5}\right)^{B}=\exp \left(B \cdot \ln \left(1-\frac{1}{5}\right)\right)$ $\ln (1-x) \sim-x \quad$ when $x \sim 0$

$$
\begin{aligned}
\left(1-\frac{1}{S}\right)^{B} & \sim \exp (B \times-(1 / s)) \\
& \sim \exp (-\beta / s) \\
\# \text { reals }= & S_{z} \times(1-\exp (-B / s))=M(S, \beta)
\end{aligned}
$$

Un-bill matching fundrian (clearly CRS)

$$
\begin{gathered}
-M(O, B)=0 \quad M(S, O)=0 \\
-\frac{\partial M}{\partial B}>0 \quad-\frac{\partial M}{\partial S} \rightarrow \text { need tochech } \\
\frac{\partial M}{\partial S}=1-\exp (-B / S)+\left[-\frac{B}{S^{2}} \exp \left(-\frac{B}{S}\right)\right] S \\
=1-e^{-B / S}-\frac{\beta}{S} e^{-B / S} \\
=1-\left[1+\frac{\beta}{S}\right] e^{-B / S}
\end{gathered}
$$

$$
\frac{\partial M}{\partial s}=1-\frac{1+\beta / s}{\exp (\beta / s)} \quad e^{x}>1+x
$$

