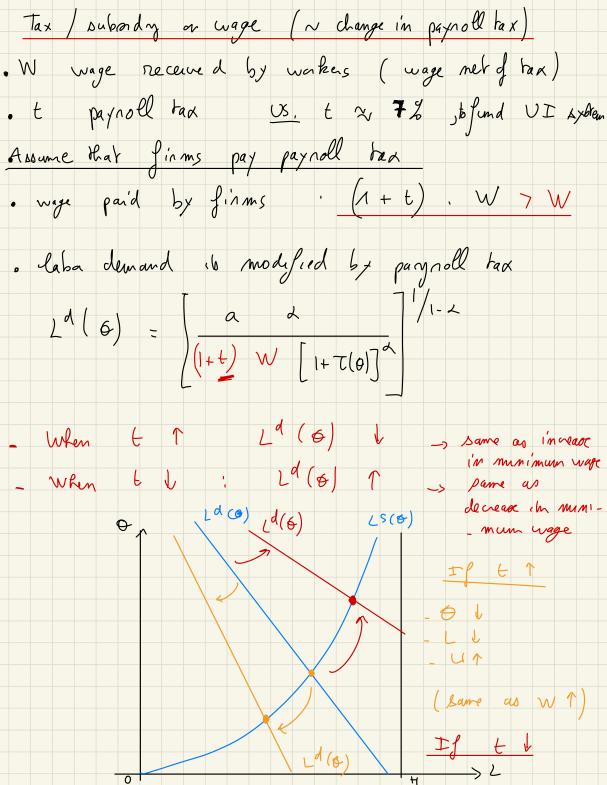

Labor-Demand Policies

Pascal Michaillat https://pascalmichaillat.org/c1/


Active	labor	market	policia	<u> </u>	Polices	80 N	educe un-
- en ploy	ment	(when	u is	700 f	ngh)		
0 '	Wage	policies		mini,	mum u	iage,	wage bax
2	Publi	c emp?	sy went				
Passive	laba	mas be	l polici	' <u>c 5</u>	Police	rics t	o improve
		f unem					
		m plox m	•				
		, i					
Mimimu	n W	age	A,sa,	une a	ell worke	us me	paid at
		vage Y					n Minimum
		up 1					
Use m	atchin a	g model	~/ jo	l na	rioning		
	• V	vage for	n di an		W		
	•	Productio	n Jund	rian.	y -	a 1	V , 02d 21
· Lab		. ' '	L5(0))	unasseo	ted by	MIMIMUM Wage
. Laha	dem	nand	2d(0,	-	L 9	 + T(6)]
						L	

W oprimal minimum wage _> moximizes welfare. Or given by formula $L^* = L^5(\phi^*) = \int_{A}^{A} (\phi^*) + \int_{A}^{A} (\phi^*) = \int_{A}^{A} ($. W" is such that Ld (6") = L" $\begin{bmatrix} a & d & 1/1-A & 1/$ $\frac{W^{+} \left(\left(+ \left(\left(6^{+} \right) \right) \right)^{d}}{a \ d} = \left(L^{+} \right)^{d-1}$ $W^{\frac{1}{2}} = \frac{\alpha \times (L^{\frac{1}{2}})^{\frac{1}{2}}}{[1 + 7(6^{\frac{1}{2}})]^{\frac{1}{2}}}$ If currently for Lot then need reduce W to w

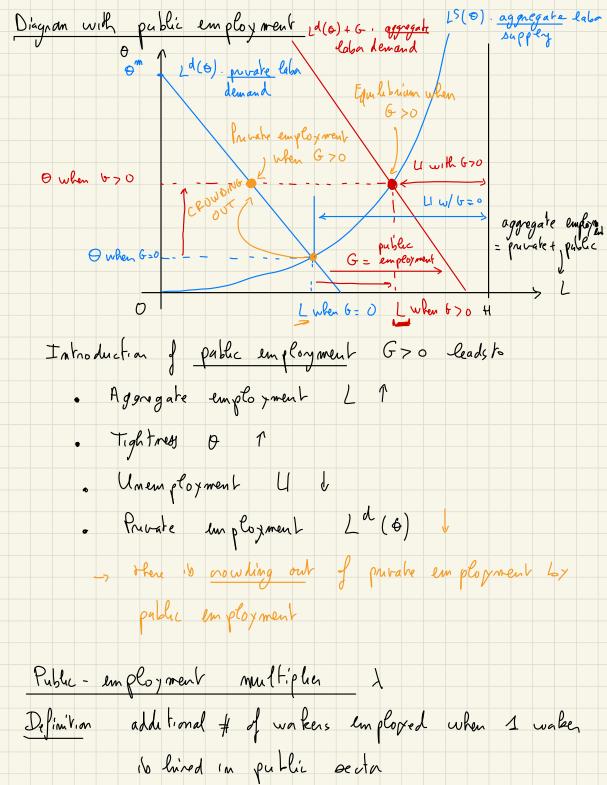
Empirical evidence on minimum vage Empirical literature is hurded in 2 camps

Minimum wage reduces employment (majorent with our model Minimum vage has no effect on employment Juneur doxment. Not consider with our matching model -> modely improve the model to explain this fact. Need to instruduce new els ments such that minimum wage dos not de press labor de mand 1) Efficiency-wage element. labor product orty increases w/wage = a = a(w) w/a'(w)>0In labor demand $\frac{\alpha}{w} = \frac{a(w)}{w}$ If a(w)/w ~ combrant - w doe not affect Ld (O) _, minimum vage dos not reduce emploxment-1 can une still explain business cycles? @ Aggregate-demand elements W1=3 disposable income 1 => spending 1 => sales 1 => "effective productivity" 1 => a 1 Could introduce a (w) w/ a'(w) >0

Optimal payroll tax +* (to madrim ze we fare > reach 0*) efficiency 0, L+= L5(6+), U+= H- L+ Optimal payroll tax such that $L^{d}(6^{*}) = L^{S}(6^{*})$ $= L^{*}$ Solve Ld (6+): L+ $=) \frac{(1+t^{*}) W \left[1+ T \left(6^{*}\right)\right]^{d}}{a} - \left(2^{*}\right)^{d-1}$ the could be so a Lo. A If paynol too pard by finms (incidence of has is on finms): pay not is effective tool But I pay noll tax paid by wakers (incidence of tax is on waters). Jinms & labor demandare unaffected by tax -> tax is completely ineffe drive _

Public employment - + wakers in public pecta = 17 6 of # wakers 15 - spending an public wakers = 63% of govern-- ment opending _ stimulus pa drages often nause public employment Example VS New Deal Introducing public employment in matching model - Matching process. public à private workers are part of same labor market

V : # vacancies from firms + # vacancies from government · 0 = V/U . S sob-se paration rate applies both to private firms l government · m (U, V) gives # matches on aggregate labor market (finms + government)
government & workers apply indiscremenately bo private finms pullic & private jobs neom's workers i'n discummabely


- Labor supply not affected by public employment $L^{s}(\theta) = \frac{f(\theta)}{\Delta + f(\theta)} + H$ private en ployment aggrégate employment Laba demand is modified by public employment. Aggregate labor demand - Private labor demand + public labor demand
(by firms)

Ld (b) + G

- Ld (b) + G

- Ld (c)]

- Ld (c)] · hoduction function la concare, · Wage ib regid a oz oz oz 1 Ld(0) + 6 Labor market egur lebrum LS (0) aggregate loba aggregate labor suply

$$\lambda = dL$$

Computation of
$$\Delta = G=0$$
 $L^{d}(\theta) = L^{s}(\theta)$

$$G>0 \qquad L^{d}(\theta) \cdot G = L^{s}(\theta)$$

Implicately, O is a fundran of & through equili-

dG -> dLUS 2 dRHS

Since equilibrium andition is valid Sefore 2 after change d6, then dLHS = dRHS

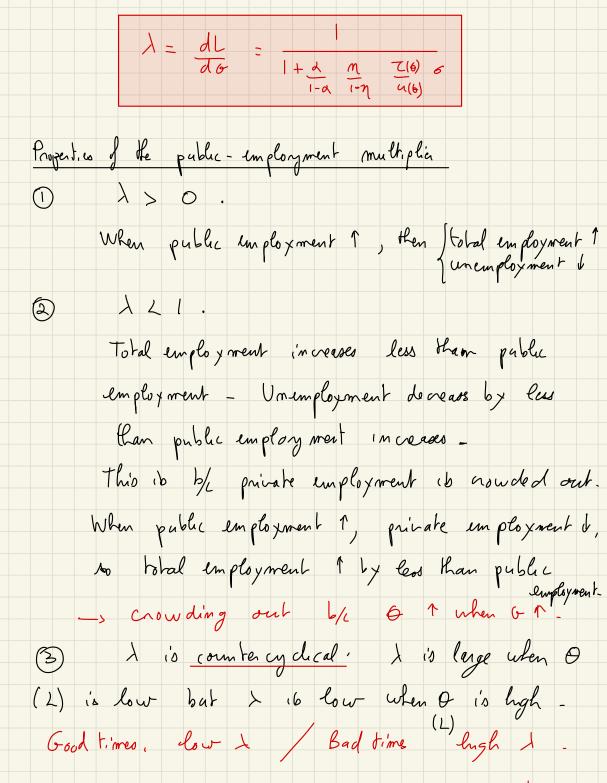
.
$$dRHS = \frac{dL^S}{d\Theta}$$
. $d\Theta$

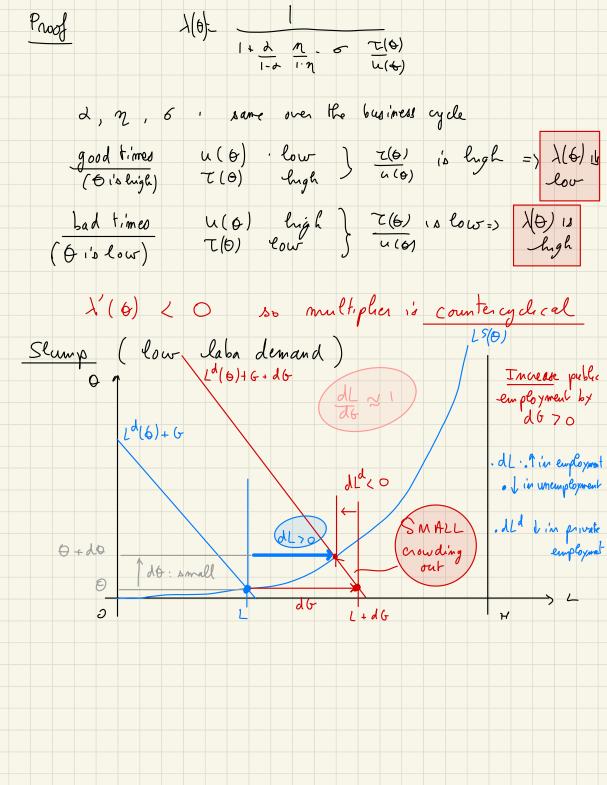
. $dLHS = \frac{dL^d}{d\Theta}$. $d\Theta + dG$

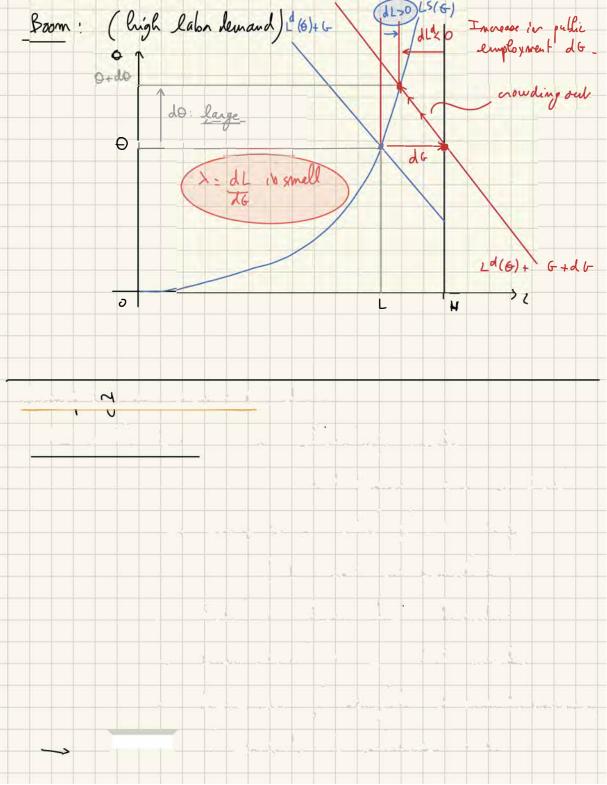
Hence $\frac{dL^A}{d\Theta}$ $d\Theta + dG = \frac{dL^S}{d\Theta}$

$$\begin{bmatrix} \frac{dL^S}{d\Theta} - \frac{dL^d}{d\Theta} \end{bmatrix} d\Theta = dG$$

$$\begin{bmatrix} \frac{dL^S}{d\Theta} - \frac{dL^d}{d\Theta} \end{bmatrix} d\Theta = \frac{dG}{dG}$$


$$\begin{bmatrix} \frac{dL^S}{d\Theta} - \frac{dL^d}{d\Theta} \end{bmatrix} d\Theta = \frac{dG}{dG}$$


Recall from "Uneur plogneut fluctuations" functions


$$E^{LS} = \frac{dlnL^S}{d\Theta} = \frac{dL^S}{d\Theta}$$

$$E^{LS} = \frac{dlnL^S}{d\Theta} = \frac{dL^S}{d\Theta}$$

$$dG = \frac{dL^S}{d\Theta} = \frac{dL^S}{d\Theta}$$

