Wage Functions

Pascal Michaillat https://pascalmichaillat.org/c1/

- average unemployment rate, 1948–2020: 5.8%
- unemployment goes up in recessions
- unemployment fluctuated between 2.5% and 15% in 1948–2020

Explaining unemployment fluctuations - large fluctuations in unemployment : countercyclical - negative correlation b/w unemploxment rate I recommend rate: Bevenidge curve Computing unemployment in the matching model: labo market tightness given by equilibrium condition: $L^{S}(\Theta) = L^{d}(\Theta)$ $\frac{f(\theta)}{A+g(\theta)} \cdot H = \begin{bmatrix} a \cdot d \\ w \begin{bmatrix} 1+\tau(\theta) \end{bmatrix}^{d} \end{bmatrix}^{1/(1-d)}$ G défines <u>implicitly</u> the tightness €. $(s \quad u(\theta) = \Delta$ $s + f(\theta)$ (, v(b). 0 × v(0) Potential sources of unemployment fluctuations: 1 a : productivity parameter demand (2) S: job- of paration nate) shock

3 H: sized-labor force

Wage-setting in the matching model: 1) Properties of wage W are key to determine business- cycle fluctuations in unemployment l vacancies 2) Wage W is openfic to each waken-firm pair. (not a market wage) -> pricing function describes wage W paid by finms to workers 3 there are many prosible pricing function -s wakers I finms weet in a sit castion of Dilateral monopoly (some bargaining power -> difficult tofind new match) -> there are many possible prices in this situation (infinitely many prices, within a range). Ly use evidence from real labor markets to specify pricing fundia.

- Labor super

		· MG
	W/	
NP		
1		

Union membership (US) selected years		
year	percent of labor force	
1930	12.0	
1945	35.0	
1954	35.0	
1970	27.0	
1983	20.1	
2013	11.3	

US) industry	# employed (1000s)	U% of total	wage ratio
Private sector (total)	104,737	<mark>6.9</mark>	122.6
Government (total)	20,450	37.0	121.1
Construction	6,244	14.0	151.7
Mining	780	7.2	96.4
Manufacturing	13,599	10.5	107.2
Retail trade	14,582	4.9	102.4
Transportation	4,355	20.4	<mark>123.5</mark>
Finance, insurance	6,111	1.1	90.2
Professional services	12,171	2.1	99.1
Education	4,020	13.0	112.6
Health care	15,835	7.5	114.9

wage ratio = 100 × (union wage) / (nonunion wage)

Annual Turnover and Layoff Rates (%) at Ford, 1913–1915

Managerial	_

	1913	1914	1915
Turnover rate	370	54	16
Layoff rate	62	7	0.1

- In 1914, Henry Ford announced that his company would pay a minimum of \$5 a day for an eight-hour day, compared to an average of \$2.30 for a nine-hour day previously.
- "There was no charity involved. We wanted to pay these wages so that the business would be on a lasting foundation. We were building for the future. A low wage business is always insecure. The payment of five dollars a day for an eight hour day was one of the finest cost cutting moves we ever made." Ford, My Life and Work, 1922.

Efficiency wage heary : higher wages increase profits by they increase productivity more than costs . wokers are more dedicated to the firm (gift-eachange treay) · working at the firm become more attractive compared to other finms Wage functions : * Fixed wage: Wis a parameter . doe not change when other percureters change . dos not change when O changes · wage function in Hall (2005) Advantages - simplicity · wage it very nigid -> wage dos not aboon b shocks, so U, V, O will be very volatile, as we see in deta

Disadvantage: • in real world, wages respond somewhat to changes in loba productivity -> w is not completely fixed. <u>Jid wage:</u> woge Junction is W(a) = w. a Jabon puduckionity * Rigid wage : parameter capturing wage level labor productionty rt [0,1] captures wage nigidity V=0:W=W->fixed wage F=1:W=Waa ->floaible wage 0LYLI: Wage 1's rigid Y clasticity of wage wat labor productivity $\frac{d \ln W}{d \ln a} = \delta \qquad \left(\begin{array}{c} \text{percentage change in } W \\ \text{when a change by } \Lambda \% \right)$ $T \text{ in Us data} \quad \in [0.3, 0.7]$ t≈ 0.5. . reasonable estimate - Blanchard & Gali (2010) r=05

- Michaillat (2012) Y = 0.7* Wage bargaining (b/u woker & firm) common bargaining solution: Nash bargaining (generalized) here: surplus - ohaving solution P. Diamond (1982) Surplus ohaving: - Ft: surplus captured by finn - W: surplus coptured by wakes - J: total surplus from worker-fin mentch (J= F+W) F = (1-B) x J W: Bx J f ((0, 1) : bargaining power of worker • MPL: marginal product of labor MPL: $a \cdot d \cdot N^{d-1}$ $(d \in (0,1))$ MPL = a (d=1, linear production function) · FOC yron profit maximization

MPL - (1 + T(0)). W = 0 \Rightarrow MPL: $(1+\tau)$ W where T: recruiter-produces ratio $\tau = \tau \cdot S / \left[q(\theta) - \tau \cdot S \right]$. Z: value of unemployment (ja wakers) - memplox ment benefits - leisure - have production } 270 - clower mentral health / physical health from manna of unemployment 3 220 · what is firm Durplus ? (in equilibrium) - output from the waker: MPL' - cost of the waker: W La firme earne MPL-w per unit time. - Poisson process w/ annical nate & destroys jobs _s expected duration of worker-finm match is 1/s.

- expected surplus for on worker - fin match: P = MPL - W · what is worker 5 surplus? \checkmark - if waker its employed: - utility gain from employed: Z (in units doutput) per unit time per unit time se poisson process E U as soon as employed lose a job, a unem ployed finds a job : halve from brasking unployed = D. f(0) Poisson process min (Poisson process &, Poisson process &z) > Poisson process $\lambda_1 + \lambda_2$ Porson proces with nate <u>s+f(o)</u> - employed! unemployed workers are in same stration. -> 1/: expected duration of situation in s+f(s) which employed = imemployed.

expected surplus from deing employed: W = W - Z b + J(0) $- \frac{\text{Wage from Surplus-phaning}}{\text{F} = (1 - \beta) \int \int \text{F} \cdot \frac{1 - \beta}{\beta} \times W$ $W: \beta \int \int \text{F} \cdot \frac{1 - \beta}{\beta} \times W$ $\frac{MPL - W(s+f(\theta)) = 1 - \beta}{\beta} \cdot \frac{W - 2}{p + f(\theta)}$ $(h - p)(w - z) = \beta \cdot [1 + f(\phi)] \cdot (MPL - w)$ $(1-\beta)W - (1-\beta)Z = \beta MPL - \beta W + \beta f(6) (MPL - W)$ $W = (1-\beta)Z + \beta MPL + \beta f(0) (MPL - W)$ W- (1-B) Z J B MPL + B . <u>f(6)</u> T(6) W $\tau(\phi) = \frac{r \cdot s}{q(\phi) - rs}; \quad f(\phi) = \Theta \cdot q(\phi)$ $\frac{\tau(6)}{\Delta} = \frac{r}{q(6)} = \frac{r}{r} = \frac{1}{r} = \frac{1}{r}$ 9(+)- 55)

 $\frac{\tau(6)g(0)}{\delta} = r \cdot 0 \cdot \left[1 + \frac{rs}{q(6) - rs} \right]$ $\underline{\tau(6)}f(6) = F \cdot \Theta \cdot \left[1 + \overline{\tau(6)}\right]$ W= A-B) Z + B MPL + Bro [1+7(0)] W W= (1-B) Z + B. MPL. (1+ r0) surplus-sharing solution to Largaining pb Yields wage fundion $W(\beta, \overline{z}, MPL, \theta, \overline{c})$ - Pissanides (200): Nash bargaining yields earderly same function as suplus ohaning (cq. (1.20)) - if workers have all pargaining power. $\beta = 1 \ell W = MPL (1 + \Gamma \theta)$ W > MPL for any O -> no finme operate.

- if firms have all bargaining power: p= 0 W = 72 -04 BZI: - WI ij ZI (better outraide option for workers) $- w \uparrow j M P 2 \uparrow$ - Wrifer