Wage Functions

Pascal Michaillat https://pascalmichaillat.org/c1/

- average unemployment rate, 1948-2020: 5.8\%
- unemployment goes up in recessions
- unemployment fluctuated between 2.5% and 15% in 1948-2020

Explaining unemployment fluctuations

- large fluctuations in unemployment : countercydicel
- negative correlation b/w unemployment nate 1 vacancy rate: Beveridge curve
Computing unemployment in the matching model:
labs market tightness given by equilibrium condition:

$$
\begin{aligned}
& L^{S}(\theta)=L^{d}(\theta) \\
& \frac{f(\theta)}{\Delta+f(\theta)} \cdot H=\left[\frac{a \cdot \alpha}{w \cdot[1+\tau(\theta)]^{\alpha}}\right]^{1 /(1-\alpha)}
\end{aligned}
$$

C defines implicitly the tightness θ.
C) $u(\theta)=\frac{s}{s+f(\theta)}$

$$
(s \quad v(\theta): \theta \times u(\theta)
$$

Potential sources of unemployment fluctuations:
(1) a :
productivity parameters
(2) 5 : job-veparation nate)
(3) $M:$ size of lab face

Wage -setting in the matching model:
(1) Properties of wage W are key to determine business -cycle fluctuations in unemployment \& vacancies.
(2) Wage W is opecific to each waker-finm pair. (not a manketwage)
\rightarrow pricing function describes wage w paid by finns to webers
(3) There are many possible pricing function
\rightarrow wakes 1 firms meet in a situation of bilateral monopoly (wakes \& finns ha $\rightarrow \rightarrow \rightarrow$ difficult rofl ind mew match)
\rightarrow There are many possible prices in this situation (infinitely many prices, within a range) L, use evidence from real Labe markets to specify pricing function.

Union membership (US) selected years	
year	percent of labor force
1930	12.0
1945	35.0
1954	35.0
1970	27.0
1983	20.1
2013	11.3

US) industry	\# employed (1000s)	U \% of total	wage ratio
Private sector (total)	104,737	6.9	122.6
Government (total)	20,450	37.0	121.1
Construction	6,244	14.0	151.7
Mining	780	7.2	96.4
Manufacturing	13,599	10.5	107.2
Retail trade	14,582	4.9	102.4
Transportation	4,355	20.4	123.5
Finance, insurance	6,111	1.1	90.2
Professional services	12,171	2.1	99.1
Education	4,020	13.0	112.6
Health care	15,835	7.5	114.9

	1913	1914	1915
Turnover rate	370	54	16
Layoff rate	62	7	0.1

- In 1914, Henry Ford announced that his company would pay a minimum of $\$ 5$ a day for an eight-hour day, compared to an average of $\$ 2.30$ for a nine-hour day previously.
- "There was no charity involved. We wanted to pay these wages so that the business would be on a lasting foundation. We were building for the future. A low wage business is always insecure. The payment of five dollars a day for an eight hour day was one of the finest cost cutting moves we ever made." Ford, My Life and Work, 1922.

Eficiency-wage hay: higher wages increase prof ts b/L they increase productivity moe than costs - wakes are mae dedicated to the finn
(gift-eachange theay)

- waking at the firm be cans mare attractric compared t_{0} other finns

Wage functions:

* Fixed wage: W is a par ameter
- dos not change when other parameters change
- dos not change when θ changes
- wage function in Hall (2005)

Advantages:

- simplicity
- wage in very rigid
\rightarrow wage do not abram shocks, so U, V, θ will be very volatile, as we ore in data.

Disadvantage: - in real wald, wages respond somewhat to changes in labe productivity $\rightarrow w$ is mot completely fixed.

* Rigid wage: wage function is

Saba parductioity
parameter capturing wage level
$\gamma \in[0,1]$: captures wage rigidity

$$
\gamma=0: \omega=\omega \rightarrow \text { fixed wage }
$$

$$
\begin{aligned}
& r=1: w=w \text { : a } \rightarrow \text { flexible wage } \\
& 1 \text { : wage is rigid }
\end{aligned}
$$

on re 1: wage is rigid
γ : elasticity of wage wat labe productivity
$\frac{d \ln W}{d \ln a}=\gamma \quad$ (percentage change in W when a change by 1%)
r in us data $\in[0.3,0.7]$
$\gamma \approx 0.5$ reasonable estimate

- Blanchard \& Gali (2010) $\quad r=0.5$
- Michaillat (2012)

$$
\gamma=0.7
$$

* Wage bangaining (b/w waker \& firm) camman bangaining solution: Nash bangaining (genenalized)
Leve: smplus - sharing solution
P. Diamand (1982)

Suplus shaving: - \mathcal{F} : supplus captrued byfirm

- W : suplus captured by wakes
- I : toral sumplus from waker-f in m match $(J=F r+W)$

$$
\begin{aligned}
& \mathcal{F}=(\Lambda-\beta) \times \mathcal{J} \\
& w=\beta \times J
\end{aligned}
$$

$\beta \in(0,1)$: bargaining power of waken

- MPL: manginal product of laba

$$
\begin{aligned}
& \text { MPL: a } \alpha \cdot N^{\alpha-1} \quad(\alpha \in(0,1)) \\
& M P L=a \quad \begin{array}{l}
\alpha=1, \text { linern produdior } \\
\text { function })
\end{array}
\end{aligned}
$$

- FOC ynom pofit maximization:

$$
\begin{aligned}
& M P L-(1+\tau(\theta)) \cdot w=0 \\
\Rightarrow & M P L=(1+\tau) \cdot W
\end{aligned}
$$

where τ : reccuiter-produces natrio

$$
\tau=r \cdot s /[q(\theta)-r \cdot s]
$$

- Z : value of unemploxment (fa wakeas)
- unemploy ment benefils
- Ceisme
- hare production
- loaver rental health / plugaical health from mauma of unemploxment $\} z<0$
- what is finm sunplus? (in equilibrium)
- outpul from the wapen: MPL
- coll of the waker: W
\rightarrow finm earms MPL-W per unit timp.
- Poisson process w/ annical nate s destroxs jobs \rightarrow expected dunation f waken-finm match is $1 / \mathrm{s}$.
- expected surplus form wakes -fin m match:

$$
F=\frac{M P L-W}{s}
$$

- What is waken's surplus?
- if waken is employed: W
- If walker is un employed: Z (in units
- utility gain from employment: W-z z ut) pe unit time

as som as employed loses a sob, a
unem pooped finds a job: calve Sham starting
employed $=0$.
- Poisson process
$\min \left(\right.$ Prison process λ_{1}, Poisson process λ_{2}) \rightarrow Poisson process $\lambda_{1}+\lambda_{2}$

Prison process with nate $s+f(\theta) \rightarrow$ emplopeedd unemployed wakes are in same situation.
$\rightarrow 1 / s+f(\theta)$: expected duration of situation in which employed \neq unemployed.
eapected sumplus from Jeing umploged:

$$
W=\frac{W-z}{s+f(\theta)}
$$

- wage from surplus-phaning:

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathcal{F}=(1-\beta) \cdot \mathcal{J} \\
W=\beta \cdot \mathcal{J}
\end{array}\right\} \quad F: \frac{1-\beta}{\beta} \times w \\
& \beta \cdot \frac{M P L-W}{s}(s+f(\theta))=\frac{1-\beta}{\beta} \cdot \frac{W-z}{p+j(\theta)} \\
& (1-\beta)(w-z)=\beta \cdot\left[1+\frac{f(\theta)}{\beta}\right] \cdot(M P L-w) \\
& (1-\beta) w-(1-\beta) Z=\beta M P L-\beta w^{\beta}+\beta \frac{f(6)}{\beta}(M P L-w) \\
& W=(\Lambda-\beta) z+\beta M P L+\beta \frac{f(\theta)}{\beta}(M P L-W) \\
& W=(1-\beta) z+\beta M P L+\beta \cdot \frac{f(\theta) \cdot \tau(\theta)}{\Delta} \cdot \tau(\theta) W \\
& \tau(\theta)=\frac{r \cdot s}{q(\theta)-r s} ; \quad f(\theta)=\theta \cdot q(\theta) \\
& \left.\frac{\tau(\theta) \cdot f(\theta)}{\Delta}=\frac{r \cdot f(\theta)}{q(\theta)-r s}=r \cdot \theta \cdot \frac{q(\theta)}{q(\theta)-r s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\tau(\sigma) f(\theta)}{\Delta}=r \cdot \theta \cdot\left[1+\frac{r s}{q(\sigma)-r s}\right] \\
& \frac{T(\theta) f(\sigma)}{\Delta}=r \cdot \theta \cdot[1+\tau(\theta)] \\
& w=\Delta-\beta) z+\beta M P L+\beta r \theta(1+\tau(\theta)] w \\
& W=(1-\beta) z+\beta \cdot M P L \cdot(1+r \theta)
\end{aligned}
$$

smplus-sharing solution to bargaining pb yields wage fundrion

$$
W(\beta, \underline{z}, M P L, \underline{\theta}, \underline{r})
$$

- Pissarides (2000): Nash bargaining yields exactly same function as surplus sharing (eq. U(1.20))
- if wares have all bargaining power.

$$
\beta=1 \& \quad \&=M P L(1+r \cdot \theta)
$$

$W \geqslant M P L \quad$ fa $a_{a x} \theta$
\rightarrow no finns operate.

- if firms have all bargaining pouch: $\beta=0$

$$
\begin{aligned}
& w=z \\
& -0<\beta<1:-w \uparrow \quad \text { if } z \uparrow
\end{aligned}
$$

(better outside option fa wakens)

$$
\begin{aligned}
& -W \uparrow \text { if } M P L \uparrow \\
& -W \uparrow \text { if } \theta
\end{aligned}
$$

