Matching Model of the Labor Market

Pascal Michaillat

https://pascalmichaillat.org/c1/

Good Model.
(1) Descriptive
(2) Ecomomial
(3) Guide to the unkwown
(3)
(3) - Multipliens

- Job queues in good/bad times

Saba supply: $\quad L^{S}(\theta, \mathbb{X})$

- H : size of laba face $\quad H>0$
- S: job-separation nate $s>0$ US: s $\approx 3.5 \%$ per month.
. $m(U, V)$: matching function
- U: \# of unemployed waters
- V: \# of vacant jobs
-u: unemployment nate
- v: vacan coy nate
definition:

$$
\begin{aligned}
& u=U / H \\
& v=V / H
\end{aligned}
$$

Labor market:
Labe Face

$\Delta \times L$: inflows into unemployment
$f(\theta) \times U$: outflows from unemployment
assumption: laban market flows are balanced unemployment nate wonder balanced flows:

$$
\begin{array}{ll}
s \times L=f(\theta) \times U & \\
s \times(H-U)=f(\theta) \times U & \text { (def. f employment) } \\
s \times(1-u)=f(\sigma) \times u & \text { (divided by } H) \\
s=f(\theta) \times u+s \times u=u \times(f(\theta)+s) \\
u=\frac{s}{s+f(\theta)} &
\end{array}
$$

Laban supply: balanced flows: inflows = outflows

$$
\begin{aligned}
& s \times L=f(\theta) \times U \\
& s \times L=f(\theta) \times(H-L) \quad(\operatorname{def} \cdot \text { of } u)
\end{aligned}
$$

$s \alpha L+f(\theta) \times L=f(\theta) \times H$
$L \times(s+f(\theta))=f(\theta) \times H$

$$
L^{s}(\theta)=\frac{f(\theta)}{s+f(\theta)} \times H
$$

$$
L^{S}(\theta)=\frac{f(\theta)}{s+f(\theta)} \cdot H=\frac{1}{1+s / f(\theta)} \times H
$$

$f(\theta)$: sob-finding nale

$$
\begin{aligned}
& f(\theta)=m(1, \theta) \Rightarrow f^{\prime}(\theta)>0 \\
& \frac{f(\theta)}{s+f(\theta)}<1 \Rightarrow L^{s}(\theta)<H \\
& \text { - } \lim _{U \rightarrow+8} m(U, V)=\lim _{V \rightarrow+8} m(L, v)=+\infty \\
& \lim _{\theta \rightarrow+8} m(1, \theta)=+8 \\
& \Rightarrow \lim _{\theta \rightarrow \infty} f(\theta)=+\infty \\
& \Rightarrow \lim _{\theta \rightarrow+\infty} f(\theta)=1 f(\theta)=1 \\
& \Rightarrow \lim _{\theta \rightarrow+\infty} L s(\theta)=H
\end{aligned}
$$

Laba supply: summary:
(1) $L^{S}(\theta)$ is inneating in θ
(2) $L^{5}(0)=0$
(3) $\quad L^{S}(\theta)<H \quad \& \lim _{\theta \rightarrow \infty} L^{S}(\theta)=H$

Comparative otratics:

$$
L^{s}(\theta)=\frac{P(\theta)}{(D)+f(\theta)} \text { H }
$$

- what hapens if \& \uparrow ? LS $(\theta) \downarrow$
- what hapens if H \uparrow ? $L^{S}(\theta) \uparrow$

Laba demand:
 recmites: HR wakers who spend rime 1 elfat to pill
vacancies ropecentahive finm:

\& seavices paold by firlm
V : \# vacancis pooted by firms
$r>0$: recumiting coot
\# recmuiter requind to heep a vacancu open per unit tione.
$s>0$: job-xeparation nate \# wakers who eeave the firim per unit time.
$\tau=R / N:$ securite-producen ratio
what is τ ?
\# wakers lost: \& $\times L$
Assumption: laban market flows are balauced
L finn: \# wakers that leave
\# Wakens that ave recumited
\Rightarrow \# wahers recunited must be $s \times L$
\Rightarrow finm must poot enough vacancia V to ocure $\Delta \times L$ recuits.
each vacancg is filled w/ proba. $q(\theta)$

$$
(q(\theta) \times V=\# \text { recun's }=s \times L)
$$

\Rightarrow \# wakers devoted to recunting:

$$
\begin{aligned}
& R=r \times V=\frac{r \times s \times}{q(\theta)} L=\frac{r \times s}{q(\theta)} \times(R+N) \\
& \frac{R}{N}=\frac{r \times s}{q(\theta)}\left(\frac{R}{N}+1\right) \quad(\text { divided by } N) \\
& \tau=\frac{r \times s}{q(\theta)}(1+\tau) \\
& \tau \times\left[1-\frac{r \times s}{q(\theta)}\right]=\frac{r \times s}{q(\theta)} \\
& \tau[q(\theta)-r \times s]=r \times s
\end{aligned}
$$

recunitu- produce natio:

$$
\tau(\theta)=\frac{r \times s}{q(\theta)-r \times s}
$$

Propenties of $\tau(\theta)$:

Recall: $q(\theta)=m\left(\frac{1}{\theta}, 1\right) \quad m(\cdots): \begin{gathered}\text { matching } \\ \text { funding }\end{gathered}$

$$
q(\theta)>0 \quad q^{\prime}(\theta)<0 \quad\left\{\begin{array}{l}
q(0) \rightarrow+\infty \\
q(+\infty) \rightarrow 0
\end{array}\right.
$$

$$
\tau(\theta)=\frac{r \times s}{q(q)-r \times s} \quad \tau(0)=\frac{r \times s}{\infty-r \times s}=0
$$

- $\tau^{\prime}(\theta)>0$
- $\tau(\theta)$ de lined $\left(0, \theta^{m}\right)$
θ^{m} : vertical asymptote $f a r$. defined such that $\lim _{\theta \rightarrow \theta^{m}} \tau(\theta)=q\left(\theta^{m}\right)=r \times s$

firm only has recurves

$$
\left[\begin{array}{l}
R>0 \\
N=0
\end{array}\right.
$$

$$
L N=0
$$

Finm: L wakers: R recuriters $+N$ producors - production function

$$
y=a \times N
$$

Y: out put
a: tecinology level / laba productionty $\alpha \in(0,1]:$ margimal relumns to labar

- $p=1:$ goods/senvices as mumeraine (unit of a ccount)
- $W>0$: $\begin{aligned} & \text { wage paid by finm to all its } \\ & \text { wakers. }\end{aligned}$
(later: baigaining, umions...)
loba coot: $W \times L=W_{x}(R+N)$

$$
=\omega \times[1+\tau(\theta)] \times N
$$

because $R=\tau(\theta) \times N$

$$
\begin{aligned}
\text { finm profits } & =\pi=\text { tumnover }- \text { labor coots } \\
\pi & =p \times Y-W \times L \\
\pi(N) & =a \times N^{\alpha}-W \times[1+\tau(\theta)] \times N
\end{aligned}
$$

Objective: $\max _{N>0} \pi(N)$ at any point intine.

$$
\pi(0)=0
$$

$(f a \alpha<1): \pi(N)$ is concave.
recessary $\&$ sufficient condition to find max $\pi(N)$:

$$
\begin{aligned}
& \pi^{\prime}(N)=0 \\
& a \times \alpha \times N^{\alpha-1}-\omega(+\tau(\theta))=0 \\
& N^{\alpha-1}=\frac{w \times[1+\tau(\theta)]}{a \cdot \alpha} \\
& N^{1-\alpha}=\frac{a \cdot \alpha}{w \times[1+\tau(\theta)]} \\
& \begin{aligned}
{[1+\tau(\theta)] \times N } & =[1+\tau(\theta)] \times\left[\frac{a \cdot \alpha}{w \alpha[1+\tau(\theta)]}\right] \frac{1}{1-\alpha} \\
L & =\left[a \times \alpha \times(1+\tau(\theta))^{1-\alpha}\right] 1 /(1-\alpha)
\end{aligned} \\
& L=\left[\frac{a \times \alpha \times(1+\tau(\theta))^{x-\alpha}}{\omega \times(1+\tau(\theta))}\right] \\
& L^{d}(\theta, w)=\left[\frac{a \cdot \alpha}{1}\right]^{1 /(1-\alpha)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Propentie of laba dem and: } \\
& \begin{aligned}
-\theta=0 \quad \tau(\theta)=0 \Rightarrow & L^{d}(0, \omega)=\left(\frac{a \alpha}{\omega}\right)^{1 / 1-\alpha} \\
-\theta \uparrow & \Rightarrow \tau(\theta) \uparrow \\
\Rightarrow & \frac{\partial L^{d}}{\partial \theta}<0 \quad(1+\tau(\theta))^{\alpha} \uparrow \\
\Rightarrow & \frac{a \alpha}{\omega(1+\tau(\theta))^{\alpha} \downarrow} \\
\Rightarrow & \left.\operatorname{since~} 1 /(1-\alpha)>0_{\omega\left(1+\tau(\theta)^{\alpha}\right)}\right)^{1 / 1-\alpha} \downarrow \\
& \left(\frac{a \alpha}{\omega(11} \downarrow\right.
\end{aligned}
\end{aligned}
$$

- at $\theta=\theta^{m}: \quad \tau(\theta) \rightarrow \infty$

$$
\lim _{\theta \rightarrow\left(\theta^{m}\right)^{-}} L^{d}(\theta, w)=0
$$

Comparative Aratics:
$-W \uparrow \quad L d(\theta) \downarrow$
$-a \uparrow \Rightarrow L^{d}(\theta) \uparrow$
(ligher wage)
(luighen produtivis vity)

Matching model

- finns maximize profits given θ : want to employ

$$
L^{d}(\theta)^{d}-L^{d}(\theta)=\left[\frac{a \cdot \alpha}{w \cdot(1+\tau(\theta))^{\alpha}}\right]^{1 / 1-\alpha}
$$

- wakes expect an employment level given θ :

$$
L S(\theta)-L^{S}(\theta)=\frac{f(\theta)}{S+f(\theta)} \cdot H \text {. }
$$

- assumptions: matching function m; production function $Y=a . N^{\alpha}$; aba market w) balanced flows

unempologrent follows a differential equation:

$$
\begin{aligned}
& \dot{u}=s \cdot L-f(\theta) u^{\prime} \\
& \dot{u}=s \cdot(H-U) \cdot f(\theta) \cdot L \\
& \dot{u}=s \cdot H-(s+f(\theta)) \cdot L
\end{aligned}
$$

if large: $L_{i}^{0}=0$ almost all the hire. use assume that $i^{i}=0$ all the time

given θ : - L'ms upboy $L^{d}(\theta)$

- LS (θ) have jobs
but what is θ ?
Neodesaical laba unarleb:
given coage W : - finms emplyy $L^{d}(w)$
- Ls (w) wakers want a job
bul what is w?

Wis surchthat " labor market clears"

$$
\text { "supply }=\text { demand" }
$$

- auctioneer - "invisible hand of the market"

- internally consistent (kulun)
G requires $\quad L^{s}(w)=L^{d}(w)$
equilibrium condition: condition far internal consistency

Matching model
equilibrium condition: to ensure internal consistency
\rightarrow to ensure that tightress θ taken as given by firms \mathcal{A} wakes its realized
$V(\theta)$: \# vacacancis pood by firms that take θ as given
$U(\theta): \#$ unemployed wakes that take θ as given
equilibrium condition: $\frac{V(\theta)}{U(\theta)}=\theta$

$$
\begin{aligned}
& V(\theta)=\frac{\Delta \times L^{d}(\theta)}{q(\theta)} \\
& U(\theta)=H-L^{5}(\theta)
\end{aligned}
$$

equilibrium imposes: $\frac{V(\theta)}{U(\theta)}=\theta$

$$
\Leftrightarrow \frac{\Delta x L^{d}(\theta)}{q(\theta)} \times \frac{1}{H-L^{S}(\theta)}=\theta
$$

$$
\begin{aligned}
& q(\theta)=f(\theta) / \theta \\
& \cdot H-L^{s}(\theta)=H\left(1-\frac{f(\theta)}{s+f(\theta)}\right)=H \cdot \frac{s}{s+f(\theta)} \\
& \Leftrightarrow \theta \cdot L^{d}(\theta) \cdot \frac{s}{f(\theta)} \cdot \frac{s+f(\theta)}{x} \cdot \frac{1}{H}=\theta \\
& \Leftrightarrow \frac{L^{d}(\theta)}{\frac{f(\theta)}{s+f(\theta)} \cdot H} \\
& \Leftrightarrow L^{s}(\theta)
\end{aligned}
$$

Graphical representation

from tightness θ^{*} : infer model values of all variables in

$$
\begin{aligned}
& L^{*}=L^{d}\left(\theta^{*}\right)=L^{S}\left(\sigma^{*}\right)=\frac{f\left(\sigma^{*}\right)}{s+\rho\left(\sigma^{*}\right)} \cdot H=L^{*} \\
& U^{*}=H-L^{*}=\frac{\Delta}{\Delta+f\left(\theta^{*}\right)} \cdot H=U^{+} \\
& u^{*}=\underset{\tau(c) \cdot N}{L^{+} / H}=\Lambda-L^{*} / H=\frac{s}{s+f\left(\sigma^{*}\right)} \\
& L=N+R=[1+\tau(\theta)] \cdot N \\
& N^{*}=\frac{L^{*}}{1+\tau\left(\theta^{*}\right)}=\frac{1}{1+\tau\left(\theta^{*}\right)} \cdot \frac{f\left(\theta^{\prime \prime}\right.}{\Delta+f\left(\theta^{*}\right)} \cdot H=N^{*} \\
& R^{*}=\tau\left(\theta^{+}\right) \cdot N^{+}=\frac{\tau\left(\theta^{\alpha}\right)}{1+\tau\left(\theta^{*}\right)} \cdot \frac{f\left(\theta^{*}\right)}{s+f\left(\theta^{*}\right)} \cdot H \cdot R . \\
& V^{*}=\theta^{*} \cdot U^{+}=\frac{\theta^{*} \cdot s}{s+f\left(\theta^{*}\right)} \cdot H=V^{*} \\
& v^{*}=\frac{V^{*}}{H}=\frac{s \cdot \theta^{*}}{s+f\left(\theta^{*}\right)}=v^{*}
\end{aligned}
$$

