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A1 Proofs

Proof of Propositions 1, 2, and 3. Equilibrium condition (10) uniquely defines q as an implicit function of c
in a static environment in the canonical model. Assume that there exists L � 0 such that q < L for all c > 0.
As 1/q(·) increases in q,

0 <

⇢

[1�d · (1� s)]
1

q(q)
+d · (1� s) ·b ·q

�

<

⇢

[1�d · (1� s)]
1

q(L)
+d · (1� s) ·b ·L

�

⌘ l.

Condition (10) cannot hold for

0 < c <
1
l
· (1�b).

Thus limc!0 q(c) = +• and limc!0 f (q(c)) = 1. Equation (3) implies limc!0 n(c) = 1. I use a similar
argument to prove Proposition 3 but I exploit equilibrium condition (13) instead of condition (10). Finally,
I use the same argument to prove Proposition 2 but I exploit equilibrium condition (12) instead of condition
(10). (I also use the fact that n  1 such that n1�a  1).

Proof of Proposition 4. When a � aR, I follow the proof of Proposition 2 but I exploit equilibrium condition
(14) instead of condition (12). When a < aR, the result follows from the continuity of all functions involved
in equilibrium condition (14).

Proof of Proposition 5. Assume that a 2 (0,aR). Let nF ⌘ nR �n. I rewrite (14) as

a ·
n

na�1 �
�

nR�a�1
o

= [1� (1� s) ·d] · c
q(q)

a · (1�a)
Z nF

0

�

nR � x
�a�2

dx = [1� (1� s) ·d] · c
q(q)

.
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Differentiating the last line with respect to a yields
(

a · (1�a) · (2�a)
Z nF

0

∂nR

∂a
·
�

nR � x
�a�3

dx

)

+

⇢

a · (1�a) · ∂nF

∂a
·na�2

�

=� c · [1� (1� s) ·d] · ∂q
∂q

· 1
q(q)2 ·

∂q
∂a

.

Equations (14) and (3) yield ∂n/∂a > 0 and ∂q/∂a > 0. Furthermore, ∂q/∂q < 0 and ∂nR/∂a < 0 when
a 2 (0,aR). Using the equation above infer that ∂nF/∂a > 0. I conclude using these comparative statics as
well as the relationships u(a) = 1� (1� s) ·n(a), uF(a) = s ·n(a)+nF(a), and uR(a) = 1�nR(a).

Proof of Proposition 6. Let x̌ = d ln(x). Note that x̌/y̌ = d ln(x)/d ln(y) = ex
y. Under Assumptions 3 and 5

the firm’s optimality condition is given by (14). I differentiate (14) around the static equilibrium for a small
variation in recruiting cost c:

a ·na�1 ·q(q)
c · [1� (1� s) ·d] · (a�1) · ň = č+h · q̌

eq
c =� [h+(1�h) · (1�a) ·u ·T (q,n)]�1 ,

where T (q,n)⌘a ·q(q) ·na�1/(c · [1�d(1� s)]). From the Beveridge curve (3) I inferred that en
c = en

q ·eq
c =

(1�h) · u · eq
c . From the system characterized by the firm’s optimality condition (14) and the Beveridge

curve (3), dq/da > 0, dn/da > 0, and du/da < 0. Moreover, ∂T/∂n < 0, ∂T/∂q < 0 so dT/da < 0. Hence,
d|eq

c |/da > 0.

Note that if a < aR, a
�

nR
�a�1

= w/a. Moreover, using the firm’s optimality condition (14),

T (q,n) = a ·na�1

[1�d · (1� s)] · c/q(q)

T (q,n) = a ·na�1

a ·na�1 �a · (nR)a�1

T (q,n) = 1
1� (nR/n)a�1 .

From definition (18), uF = s · n+(nR � n). If s is small enough (if the time period is short enough), uF ⇡
nR �n so n ⇡ nR �uF . If u << n, uF << nR, and nR ⇡ 1. In that case,

T (q,n)⇡ 1

1�
⇣

1� uF

nR

⌘1�a ⇡ 1
(1�a)

· nR

uF

eq
c ⇡�



h+(1�h) ·u · nR

uF

��1

⇡�
h

h+(1�h) · u
uF

i�1
.
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Proof of Lemma 1. Let Lt denote the value to a worker of being employed after the matching process in
period t. Let Ut denote the value to a worker of being unemployed.

Lt = wt +d ·Et [{1� s · (1� f (qt+1))}Lt+1 + s · (1� f (qt+1)) ·Ut+1]

Ut = d ·Et [(1� f (qt+1)) ·Ut+1 + f (qt+1) ·Lt+1] .

These continuation values are the sum of current payoffs, plus the discounted expected continuation values.
Combining both conditions yields the worker’s surplus from an established relationship with a firm:

Lt �Ut = wt +d ·Et [(1� s) · (1� f (qt+1)) · (Lt+1 �Ut+1)] .

The firm’s surplus from an established relationship is the hiring cost c ·at/q(qt) because a firm can replace
a worker at that cost during the matching period. Assume that wages are continually renegotiated. Since
the bargaining solution divides the surplus of the worker-firm match with the worker keeping a fraction
b 2 (0,1) of the surplus, the worker’s surplus is related to the firm’s surplus and

Lt �Ut =
b

1�b
· c ·at

q(qt)
.

Thus the solution of the bargaining game is

wt = c · b
1�b

·
⇢

at

q(qt)
�d · (1� s) ·Et

✓

1
q(qt+1)

�qt+1

◆

·at+1

��

.

Proof of Lemma 2. The wage schedule w(nt(i)) is determined by Nash bargaining over the surplus from the
marginal match. To simplify, I assume that the wage that solves the bargaining problem does not generate
layoffs. I verify at the end of the derivation that the solution actually satisfies this condition. As in the proof
of Lemma 1 the worker’s surplus from being employed in firm i is

Lt �Ut = w(nt(i))+d ·Et [(1� s) · (1� f (qt+1)) · (Lt+1 �Ut+1)] . (A1)

Once the recruiting expenses are sunk, the surplus Jt accruing to the firm from hiring a marginal worker is
the marginal profit of having an additional worker:

Jt =
∂g

∂n(i)
(nt(i),at)�wt(nt(i))�nt(i) ·

∂w
∂n(i)

(nt(i))+(1� s) ·d ·Et



c ·at+1

q(qt+1)

�

. (A2)

The first-order condition of the firm’s profit-maximization problem implies

Jt =
c ·at

q(qt)
. (A3)

Since the bargaining solution divides the surplus of the match between the marginal worker and the firm with
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workers keeping a fraction b 2 (0,1) of the surplus, worker’s surplus is related to firm’s marginal surplus by

Lt �Ut =
b

1�b
· Jt . (A4)

I combine (A1)-(A4) to derive a differential equation for the wage schedule:

w(nt(i))+b ·nt(i) ·
∂w

∂n(i)
(nt(i)) = b



∂g
∂n(i)

(nt(i),at)+ c · (1� s) ·d ·Et [at+1 ·qt+1]

�

.

With g(nt(i),at) = at ·nt(i)a the solution of the differential equation is

w(nt(i)) = b ·


a ·at ·nt(i)a�1

1�b · (1�a)
+ c · (1� s) ·d ·Et [at+1 ·qt+1]

�

.

Proof of Lemma 3. I determine a condition on the stochastic process for technology as well as the param-
eters of the model such that private efficiency of all worker-firm matches be respected at all time. By
Definition 2, a necessary and sufficient condition for private efficiency is

0  wt 
∂g

∂n(i)
(n⇤t ,at)�n⇤t ·

∂w
∂n(i)

(n⇤t ,qt ,nt ,at)+d · (1� s) ·Et



c ·at+1

q(qt+1)

�

, (A5)

where n⇤t ⌘ (1� s) ·nt�1. Under Assumptions 3 and 5, condition (A5) becomes

w ·ag
t  a ·at · [(1� s) ·nt�1]

a�1 +d · (1� s) ·Et



c ·at+1

q(qt+1)

�

.

Since Et

h

c·at+1
q(qt+1)

i

� 0, a sufficient condition for private efficiency is

a
w
· (1� s)a�1 ·na�1

t�1 � ag�1
t . (A6)

The firm’s optimality condition equation in period t �1 in a symmetric equilibrium is

a ·at�1 ·na�1
t�1 = w ·ag

t�1 +
c ·at�1

q(qt�1)
�d · (1� s) ·Et�1



c ·at

q(qt)

�

.

I assume that technology is persistent enough such that for all t �1

c ·at�1

q(qt�1)
�d · (1� s) ·Et�1



c ·at

q(qt)

�

� 0.

This is equivalent to imposing that frictional unemployment always be positive (this is verified in the simu-
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lations of the calibrated model). Under this technical assumption,

a ·at�1 ·na�1
t�1 � w ·ag

t�1. (A7)

Plugging (A7) into (A6) yields the following sufficient condition:

(1� s)a�1 �
✓

at�1

at

◆1�g

(a�1) · ln(1� s)� (1� g) · [ln(at�1)� ln(at)] .

Using ln(at) = ln(at�1)+ zt , I find that a sufficient condition to avoid inefficient separations in period t is

zt �
1�a
1� g

· ln(1� s).

Let F(·) be the cumulative distribution function of the N(0,1) distribution. Given that zt is normally dis-
tributed with variance s2, inefficient separations occur with probability below

F
✓

1
s
·


1�a
1� g

· ln(1� s)
�◆

.

Conversely if we want inefficient separations to occur with a probability below p, it is sufficient that the
wage flexibility g verifies

g � 1� (1�a) · ln(1� s)
s ·F�1(p)

Proof of Corollary 1. Apply the proof of Proposition 6 with a = 1.

A2 Some Derivations

A2.1 Private-efficiency condition on wages

I assume that firms are symmetric. I show that condition (8) from Definition 2 is in fact a necessary and
sufficient condition for private efficiency of all firm-worker matches. Clearly, since the flow value from
unemployment is 0, and since all firms offer the same wage, workers never quit as long as they receive a
positive wage wt > 0. I now focus on the firm’s optimal behavior, which is detailed in Lemma A1.

LEMMA A1. Let the marginal revenue n̂t(i) be defined by

n̂t(i)⌘
∂g

∂n(i)
((1� s) ·nt�1(i),at) .
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There exist marginal costs nH
t (i)> nL

t (i) such that:

(i) if n̂t(i)< nL
t (i), firm i lays off workers;

(ii) if n̂t(i) 2 [nL
t (i),nH

t (i)], firm i freezes hiring;

(iii) if n̂t(i)> nH
t (i), firm i hires workers.

Proof. The Lagrangian for firm i’s problem, which accounts for possible layoffs, is

L =E0 Â
t�0

dt · {g(nt(i),at)�nt(i) ·w(nt(i),qt ,nt ,at)

�1{nt(i)> (1� s) ·nt�1(i)} ·
c ·at

q(qt)
· [nt(i)� (1� s) ·nt�1(i)]

�

,

where 1{x} is the indicator function (1{x} = 1 if and only if x is true). The firm’s problem is a concave
maximization problem, so it admits a unique solution determined by the first-order conditions. The highest
marginal product of labor that firm i can obtain in period t without laying off workers is

n̂t(i) =
∂g

∂n(i)
((1� s) ·nt�1(i),at) .

I define the following marginal costs:

nL
t (i)⌘wt(i)+(1� s) ·nt(i) ·

∂w
∂n(i)

((1� s) ·nt(i),qt ,nt ,at)�d ·Et



∂Lt+1

∂nt(i)

�

nH
t (i)⌘wt(i)+(1� s) ·nt(i) ·

∂w
∂n(i)

((1� s) ·nt(i),qt ,nt ,at)+
c ·at

q(qt)
�d ·Et



∂Lt+1

∂nt(i)

�

,

where I define:

Lt+1 ⌘ Â
t�t+1

dt�(t+1) {g(nt(i),at)�nt(i) ·w(nt(i),qt,nt,at)

�1{nt(i)> (1� s) ·nt�1(i)} ·
c ·at
q(qt)

· [nt(i)� (1� s) ·nt�1(i)]
�

.

Computing nL
t (i) and nH

t (i) requires computing Et [∂Lt+1/∂nt(i)]. Let F be the s�algebra generated by
future realizations of the stochastic process {at,t � t +1}, taking as given the information set at time t. I
partition F as follows:

F = F +[F �[+•
h=1 F h. (A8)

F + is the subset of future realizations of {at} such that there is hiring next period. F � is the subset such
that there are layoffs next period. For h � 1, F h is the subset such that there is a hiring freeze for the h next
periods. Let p+ = P(F +), p� = P(F �), and ph = P(F h) be the measures of these subsets. Using the law
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of total probability over this partition,

Et



∂Lt+1

∂nt(i)

�

= p+ ·Et



∂Lt+1

∂nt(i)
|F +

�

+ p� ·Et



∂Lt+1

∂nt(i)
|F �

�

+
+•

Â
h=1

ph ·Et



∂Lt+1

∂nt(i)
|F h

�

.

It is easy to show that:

Et



∂Lt+1

∂nt(i)
|F +

�

=(1� s) ·Et



c ·at+1

q(qt+1)
|F +

�

Et



∂Lt+1

∂nt(i)
|F �

�

=0

Et



∂Lt+1

∂nt(i)
|F h

�

=Et

"

t+h

Â
j=t+1

d j�(t+1) · (1� s) j�t ·
⇢

∂g
∂n(i)

((1� s) j�t ·nt(i),a j)

�(1� s) j�t · nt(i) ·
∂w

∂n(i)
((1� s) j�t ·nt(i),q j,n j,a j)�w j(i)

�

+dh(1� s)h+1 · c ·at+h+1

q(qt+h+1)
|F h

�

.

nL
t (i) and nH

t (i) are well defined. They depend on the stochastic process {qt,t � t +1} and on employment
(1�s) ·nt�1(i) at the beginning of period t. I assume that the marginal cost is increasing in nt(i), and that the
marginal product of labor ∂g/∂n is decreasing in nt(i) (which is true with constant or diminishing marginal
returns to labor in production). nL

t (i) is the lowest marginal cost that the firm can achieve by keeping all
its workforce. This is achieved by freezing hiring. nH

t (i) � nL
t (i) is the lowest marginal cost that the firm

can achieve while recruiting workers. It is achieved by recruiting an infinitely small amount of workers.
The optimal decision of the firm is obtained by comparing nL

t (i),nh
t (i), and n̂t(i). The optimal decision of

the firm is characterized by the equality of marginal cost and marginal product of labor. If n̂t(i) < nL
t (i),

firm i lays off workers to increase its marginal product of labor and reduce its marginal cost. Conversely if
n̂t(i)> nH

t (i), firm i hires workers to reduce its marginal product of labor and increase its marginal cost until
both are equal. If n̂t(i) 2 [nL

t (i),nH
t (i)], firm i freezes hiring.

If a firm freezes hiring in a symmetric environment, all firms do so: qt = 0, c · at/q(qt) = 0, and
nL

t (i) = nH
t (i) for all i. Thus hiring freezes occur with probability 0. Either all firms recruit, or they

all lay off workers. Using Lemma A1 and its proof, we know that in a symmetric environment a nec-
essary and sufficient condition to avoid layoffs in period t is n̂t � nL

t . Moreover, Et [c ·at+1/q(qt+1)] =

Et [c ·at+1/q(qt+1)|F +] · p+ because Et [c ·at+1/q(qt+1)|F �] = 0, and ph = 0 for all h, using the partition
defined by (A8). Therefore

Et [∂Lt+1/∂nt(i)] = Et



c ·at+1

q(qt+1)
|F +

�

· p+ = Et



c ·at+1

q(qt+1)

�

.

Accordingly, a necessary and sufficient condition to avoid layoffs is that for all t,

wt 
∂g

∂n(i)
((1� s) ·nt�1,at)� (1� s) ·nt�1 ·

∂w
∂n(i)

((1� s) ·nt�1,0,(1� s) ·nt�1,at)+d · (1� s) ·Et



c ·at+1

q(qt+1)

�

.
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A2.2 Semi-elasticity ew
u of wages with respect to unemployment

Let ex
y ⌘ d ln(x)/d ln(y) be the elasticity of x with respect to y and ex

y ⌘ d ln(x)/dy be the semi-elasticity of x
with respect to y. Using various definitions and equilibrium conditions (3) and (14), I compute the following
elasticities in steady state:

ew
a = g

ew
u =

1
u
· ew

u =
1

u · eu
w
=



u
g
· eu

a

��1

eu
n =�1�u

u
en

q = (1�h) ·u

eq
a =

1� g
h

· w

a ·na�1
h

1+(1�a) · 1�h
h ·u

i

�w

ew
u =�

2

4u · (1�u) · 1� g
g

· 1�h
h

· w

a ·na�1
h

1+(1�a) · 1�h
h ·u

i

�w

3

5

�1

.

A2.3 Wage rigidity in newly created jobs and in existing jobs

In period t, let wt,t be the wage in jobs newly created, and let wt,t be the wage in existing jobs created in
period t < t. Consider a world in which wages follow the wage schedule in Assumption 5: for all t and for
all t  t

wt,t = w ·ag
t .

There is a unique wage prevailing in all jobs (newly created and existing jobs alike). The wage only depends
on technology in the current period.

Consider an alternative world in which wages follow an alternative wage schedule. In newly created jobs
at time t,

wt,t = w ·ag
t

and in existing jobs created at time t < t,

wt,t = wt�1 ·
✓

at

at�1

◆z
.

Equivalently, in jobs created at time t  t wages are given by

wt,t = w ·ag
t ·a�z

t ·az
t

Notice that if z = g, both worlds are identical.

The wage schedule in the second world is more realistic as it allows for a different wage rigidity in
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newly created jobs and in existing jobs in line with empirical evidence [Pissarides, 2009]. Does the wage
rigidity z in existing jobs matter for firm’s recruiting decisions? Firm’s recruiting decisions solely depend
on the expected present value of wages paid during the entire duration of a match [Hall and Milgrom, 2008;
Pissarides, 2009]. In the first world the expected present value for a job created at t is

W 1
t =

+•

Â
j=0

d j · (1� s) j Et [wt,t+ j]

= w ·
+•

Â
j=0

d j · (1� s) j Et

h

ag
t+ j

i

= w ·
+•

Â
j=0

d j · (1� s) j (Et [at+ j])
g

= w ·
+•

Â
j=0

d j · (1� s) j (at)
g

= w · ag
t

1�d · (1� s)

The second line is obtained using the certainty equivalence approximation (valid if g is close enough to 1
such that the function x 7! xg be linear enough). The third line is obtained by approximating the technology
process by a random walk such that Et [at+ j] = at for all j � 0 (empirically, I cannot reject that technology
follows a random walk in US data). The elasticity of W 1

t with respect to at is g.

In the second world the expected present value for a job created at t is

W 2
t =

+•

Â
j=0

d j · (1� s) j Et [wt,t+ j]

= w ·ag
t ·

+•

Â
j=0

d j · (1� s) j · 1

az
t

Et

h

az
t+ j

i

= w ·ag
t ·

+•

Â
j=0

d j · (1� s) j · 1

az
t

(Et [at+ j])
z

= w · ag
t

1�d · (1� s)

This result is obtained using the same approximations as above (certainty equivalence and random walk).
Crucially, W 1

t =W 2
t . The wage schedule in Assumption 5 leads to the same recruiting behavior as a realistic

two-tier wage schedule in which wage flexibility is different for newly created and existing jobs, as long as
both schedules have the same wage flexibility for newly created jobs (measured by the elasticity of wages
in newly created jobs with respect to technology). Furthermore the elasticity of W 2

t with respect to at is g,
independent of z. It is critical to estimate the flexibility of wages in newly created jobs. The reason is that
only this flexibility matters to explain the recruiting behavior of firms over the business cycle, even if wages
in existing jobs have a different flexibility from wages in newly created jobs.
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A2.4 Log-linearized model

I first characterize the steady state of the model. I then describe the log-linearized equilibrium conditions
around the steady state. The symmetric steady-state equilibrium

�

c,n,y,h,q,u,w
 

is characterized by

u =
s

s+(1� s) · f (q)

n =
1�u
1� s

h =s ·n
y =a ·na

c =y� c ·a
q(q)

·h

w =w

0 =a ·na�1 �w� [1�d · (1� s)]
c ·a
q(q)

a =1

In steady state the components of unemployment satisfy

uR = 1� (a/w)1/(1�a)

uF = u�uR.

Let x̌t ⌘ d ln(xt) denotes the logarithmic deviation of variable xt . The equilibrium is described by the
following system of log-linearized equations:

• Definition of labor market tightness:

(1�h) · q̌t = ȟt � ǔt�1

• Definition of unemployment:

ǔt +
1�u

u
· ňt�1 = 0

• Law of motion of employment:
ňt = (1� s) · ňt�1 + s · ȟt

• Resource constraint in the economy (all production is either consumed or allocated to recruiting):

y̌t = (1� s1) · čt + s1 ·
�

ȟt +h · q̌t + ǎt
�

,

with s1 =
c

q(q)
· s ·n1�a.
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• Production constraint:
y̌t = ǎt +a · ňt

• Wage rule:
w̌t = g · ǎt

• Firm’s optimality condition:

�ǎt +(1�a) · ňt + s2 · w̌t + s3 ·
�

h · q̌t + ǎt
�

+(1� s2 � s3) ·Et
⇥

h · q̌t+1 + ǎt+1
⇤

= 0

with s2 = w · 1
a·a ·n

1�a and s3 =
c

q(q) ·
1
a ·n1�a.

• Productivity shock:
ǎt = r · ǎt�1 + zt

The components of unemployment are described by the following log-linear equations:

ǔR
t =� 1� g

1�a
· 1�uR

uR · ǎt�1

ǔt =
u�uR

u
· ǔF

t +
uR

u
· ǔR

t .

A3 Other Decompositions of Unemployment

In this section I approach the decomposition of unemployment presented in Section IV.D from another angle.
I decompose actual US unemployment into rationing and frictional series instead of decomposing model-
generated unemployment. To do so, I back out from observable series in US data the series of unobserved
shocks necessary for the model to match the data exactly.

As in Shimer [2005] and Pissarides [2009], I approximate the fully dynamic model at time t when the
realization of technology is at = a by the equilibrium of the static model with technology a. In particular,
I assume that labor market tightness qt is related to employment nt at any time by the Beveridge curve (3).
This approximation is motivated by the observation that the labor market rapidly converges to an equilibrium
in which inflows to and outflows from employment are balanced because rates of inflow to and outflow from
unemployment are large, while technology shows a lot of persistence [Hall, 2005; Pissarides, 1986, 2009;
Rotemberg, 2008; Shimer, 2007]. Employment nt is determined by the firm’s optimality condition (14). As
pointed out by Pissarides [2009], abstracting from stochastic fluctuations in technology does not reduce the
realism of the model much because technology is quite persistent in the data.

In this section, I explore the possibility that data are generated by three types of shocks:

• technology shocks {at}—this shock is the one considered in the search-and-matching literature and
in the text;
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• wage shocks {wt} that influence the wage level wt = wt ·ag
t —historical studies suggest that this shock

may have played a large role during the Great Depression;

• matching shocks {µt} that influence the matching function h(ut ,vt) = µt · uh
t · v1�h

t —the shift of the
Beveridge curve in 2008–2010 in the US suggests that this shock may have played a role in the 2008–
2010 recession.

Under the realization of shocks {at ,wt ,µt}, employment nt , labor market tightness qt , and output yt are
given by a system of three equations:



1
µt

· s ·nt

1� (1� s) ·nt

�1/(1�h)
= qt

a ·na�1
t �wt ·ag�1

t = [1� (1� s) ·d] · c
µt

·qh
t

yt = at ·na
t

which defines implicit functions for employment, output, and labor market tightness:

nt = n(at ,wt ,µt) (A9)

yt = y(nt ,at) (A10)

qt = q(nt ,µt). (A11)

With the labor market in steady state, nt = nt�1 and unemployment is related to employment by ut = 1�
(1� s) · nt . Hence equations (A9)-(A11) define implicit relationships between three observable variables
{ut ,yt ,qt} and three unobservable shocks {at ,wt ,µt}, which we can write

ut = u(at ,wt ,µt). (A12)

yt = y(ut ,at). (A13)

qt = q(ut ,µt). (A14)

As technology shocks, matching shocks, and wage shocks are not directly observable, I exploit the structure
imposed by the model to back out the realizations of shocks {a⇤t ,w⇤

t ,µ
⇤
t } that generated the observable series

�

ût , q̂t , ŷt
 

in US data. The observable series used are described in details in Section IV. I use the shock
series to construct series for frictional unemployment and rationing unemployment:

uR
t = max

(

0,1�
✓

a
wt

◆

1
1�a

·a
1�g
1�a
t

)

, (A15)

uF
t = ut �uR

t , (A16)

which have the property that their sum matches exactly observed unemployment.
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A3.1 Technology shock

I first assume that there is only a technology shock, and wt = w and µt = µ for all t, where w and µ are
calibrated in Table 1. From observed employment {ût}, I can construct the implied technology series {a⇤t }
using (A12). For all t, a⇤t solves

ût = u(a⇤t ,w,µ).

Then, I construct rationing and frictional unemployment rates from {a⇤t } and equations (A15) and (A16).

The decomposition is shown on the top panel in Figure A3, and is quantitatively similar to that presented
in Figure (4). Current events illustrate how the composition of unemployment drastically changes over the
business cycle. In 2006:Q4, detrended unemployment was at 4.9%, frictional unemployment was 4.3%,
and rationing unemployment was only 0.6%. In 2008:Q2, unemployment was at 5.8%, of which 3.6%
was frictional unemployment and 2.2% was rationing unemployment. Finally in 2009:Q2, unemployment
reached 9.9%, frictional unemployment fell to 2.3%, and rationing unemployment increased to 7.6%.

A3.2 Technology and wage shocks

I assume that unemployment fluctuations are driven by technology and wage shocks {at ,wt}. I assume that
µt = µ for all t, where µ is calibrated in Table 1. From observed unemployment {ût} and observed output
{ŷt}, I can retrieve the series of technology and wage shocks {a⇤t ,w⇤

t } that generated the data using (A12)
and (A13): for all t, a⇤t and w⇤t solve

ût = u(a⇤t ,w⇤
t ,µ)

ŷt = y(ût ,a⇤t ).

As showed in Figure A1, {a⇤t } is similar to the total factor productivity series constructed by Fernald [2009],
which accounts for variable capital utilization and labor hoarding. The similarity suggests that the model
offers a good description of labor market fluctuations at business cycle frequency.

I construct rationing and frictional unemployment rates from {a⇤t ,w⇤
t } and equations (A15) and (A16).

The decomposition is not shown as it is exactly similar to the one on the top panel. In fact, for an observed
unemployment series, I can infer implied employment n̂t = (1� ût)/(1� s)) and implied tightness q̂t =

q(ût ,µ). The estimated ratio (wt/at)⇤ always satisfies

(wt/at)
⇤ = a · n̂a

t � [1� (1� s) ·d] · c
q(q̂t)

. (A17)

For a given observed unemployment ût , frictional and rationing unemployment depend only on (wt/at)⇤
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Figure A1: Estimated technology and utilization-adjusted technology in US data, 1964–2009
Notes: This graph compares the quarterly, utilization-adjusted TFP series constructed by Fernald [2009], to the quarterly technology
series {a⇤t } estimated in the text from observed output and unemployment data by solving ŷt = y(ût ,a⇤t ) for a⇤t . The time period
is 1964:Q1–2009:Q2. These quarterly series are reported after detrending the log of the series using an HP filter with smoothing
parameter 105.

through

uR
t = max

(

0,1�


1
a
· (wt/at)

⇤
��1/(1�a)

)

.

uF
t = ût �uR

t .

To conclude, if only technology and wage shocks hit the economy, the decomposition of observed unem-
ployment does not depend on the specific realizations of the technology and wage shocks, as the ratio wt/at

is bound to satisfy (A17).

A3.3 Technology, matching, and wage shocks

I now assume that unemployment fluctuations are driven by technology, matching, and wage shocks. From
observed unemployment {ût} , observed output {ŷt}, and observed labor market tightness

�

q̂t
 

, I can re-
trieve the series of technology, wage, and matching shocks {a⇤t ,w⇤

t ,µ
⇤
t } that generated the data using (A12), (A13),

and (A14). For all t, a⇤t , w⇤
t , µ⇤t solve

ût = u(a⇤t ,w⇤
t ,µ)

ŷt = y(ût ,a⇤t )

q̂t = q(ût ,µ⇤t )
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Figure A2: Matching efficiency in US data, 1964–2009

Notes: The graph is obtained by solving q̂t = q(ût ,µ⇤t ) for µ⇤t for all t, given observed unemployment and labor market tightness
�

ût , q̂t
 

. The time period is 1964:Q1–2009:Q2.

The estimated matching shocks {µ⇤t } are displayed in Figure A2. Matching efficiency does fluctuate, and
as pointed out by various observers of the labor market, the efficiency of matching has fallen drastically
in the current 2008–2010 recession (adverse shift of the Beveridge curve). In spite of these fluctuations,
the quantitative results are scarcely affected. I construct rationing and frictional unemployment rates from
observed unemployment {ût}, estimated shocks {a⇤t ,w⇤

t }, and equations (A15) and (A16). The decompo-
sition is shown on the bottom panel in Figure A3. It is similar to the one in the top panel. Hence, shocks
to matching efficiency do not modify quantitatively the decomposition of unemployment. It is worth noting
that, compared to the earlier results, the drop in frictional unemployment in the current recession is slightly
milder because the increase in unemployment is caused in part by a reduction in matching efficiency. More
precisely, in 2006:Q4, actual detrended unemployment was at 4.9%, frictional unemployment was 4.2%, and
rationing unemployment was only 0.7%. In 2008:Q2, unemployment was at 5.8%, of which 3.8% was fric-
tional unemployment and 2.0% was rationing unemployment. Finally, in 2009:Q2, unemployment reached
9.9%, frictional unemployment fell to 2.8%, and rationing unemployment increased to 7.1%.

A4 Sensitivity Analysis of Quantitative Results

A4.1 Calibration of recruiting cost

There is a relatively wide range of admissible values for the recruiting cost c. Reasonable calibrations of
c would be in the range [0.098 ·w, 0.54 ·w]. In the text I picked the mid-point of this range: c = 0.32 ·w.
This estimate has the advantage of being well within the range of estimates used in the literature. Using
the average unemployment rate and labor market tightness in JOLTS, I find that c = 0.32 corresponds to
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Figure A3: Decomposition of actual US unemployment, 1964–2009
Notes: The graph decomposes actual unemployment, which is the quarterly average of seasonally-adjusted monthly series con-
structed by the BLS from the CPS. Actual unemployment is detrended with an HP filter with smoothing parameter 105. The time
period is 1964:Q1–2009:Q2. The top panel is obtained by inferring the series of technology shocks needed to match actual unem-
ployment, or equivalently, by inferring the series of wage shocks and technology shocks needed to match both actual unemployment
and output. The bottom panel is obtained by inferring the series of wage shocks, technology shocks, and matching shocks needed
to match actual unemployment, output, and labor market tightness.
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0.89% of the total wage bill being spent on recruiting. This is in line with a long list of papers who use a
ratio of adjustment costs to output of 1% [Andolfatto, 1996; Barnichon, 2010; Blanchard and Galı́, 2010;
Gertler and Trigari, 2009; Thomas, 2008]. Since I estimate recruiting cost to be 0.32 of a worker’s wage,
my paper is also in line with influential papers: for example, Shimer [2005] picks vacancy-posting cost to
be 0.213 of a worker’s wage, Elsby and Michaels [2008] picks 0.27, Pissarides [2009] picks 0.357, and Hall
and Milgrom [2008] picks 0.433 .

In this section I examine how the quantitative properties of the model change with a low (c = 0.0.98 ·w)
and a high (c = 0.54 ·w) recruiting cost. The calibration strategy in Section IV implies that calibrating the
recruiting cost differently affects the production-function parameter a and the steady-state wage w. Under
the low-cost calibration, c = 0.066, a = 0.662, and w = 0.671. Under the high-cost calibration, c = 0.362,
a = 0.671, and w = 0.671.

Table A1 reports the simulated moments under the alternative calibrations. The main difference with
simulated moments reported in Table 3 is that standard deviations for unemployment, vacancy, and labor
market tightness are lower in the high-cost model, and are higher in the low-cost model. This was expected
as in the high-cost model recruiting costs, which are countercyclical and therefore dampen fluctuations in
technology and reduce the amplitude of fluctuations, play a more important buffer role than in the calibration
in the text (the opposite mechanism is at work in the low-cost model). The amplification of technology
shocks on the labor market under these alternative specifications is modified accordingly:

• In the high-cost model a 1-percent decrease in technology increases unemployment by 4.5%, reduces
vacancy by 5.0%, and reduces labor market tightness by 9.5%.

• In the low-cost model a 1-percent decrease in technology increases unemployment by 9.2%, reduces
vacancy by 10.4%, and reduces labor market tightness by 19.6%.

• This compares to US data, where a 1-percent decrease in technology increases unemployment by
4.2%, reduces vacancy by 4.3% and reduces labor market tightness by 8.6%.

The sensitivity analysis confirms that any of these calibrations allows the model to match the amplification
of technology observed in the data. Moreover the behavior of the wage, correlations, and autocorrelations
are virtually identical to those reported in the text, and the conclusions are unaffected.

The second question is how decomposition of unemployment is affected by these alternative calibra-
tions. Clearly the steady-state decomposition is different as higher recruiting costs imply higher frictional
unemployment. In fact, in steady state:

• if c = 0.362: u = 5.8%, uR = 0.1%, uF = 5.7%;

• if c = 0.066: u = 5.8%, uR = 4.1%, uF = 1.7%.

Figure A4 presents the dynamic response of the model. The responses of labor market variables are not
affected by the new calibration beyond what was already noted with simulated moments (the amplification
of technology shocks and the volatility of labor market variables are smaller in a model with larger recruiting
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Table A1: Simulated moments with technology shocks and various recruiting costs

Low recruiting cost: c = 0.066

u v q w y a

Standard Deviation 0.141 0.176 0.308 0.011 0.021 0.015
Autocorrelation 0.897 0.750 0.853 0.821 0.844 0.821

Correlation

1 -0.887 -0.964 -0.981 -0.989 -0.981
– 1 0.978 0.888 0.874 0.888
– – 1 0.956 0.951 0.956
– – – 1 0.998 1.000
– – – – 1 0.998
– – – – – 1

High recruiting cost: c = 0.362

u v q w y a

Standard Deviation 0.068 0.084 0.148 0.011 0.018 0.015
Autocorrelation 0.906 0.778 0.869 0.826 0.842 0.826

Correlation

1 -0.899 -0.968 -0.979 -0.985 -0.979
– 1 0.980 0.908 0.901 0.908
– – 1 0.964 0.962 0.964
– – – 1 0.999 1.000
– – – – 1 0.999
– – – – – 1

Notes: Results from simulating the log-linearized model with stochastic technology under various calibrations of the recruiting cost
c. All variables are reported in log as deviations from an HP trend with smoothing parameter 105.
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Figure A4: IRFs to a negative technology shock under different calibrations of recruiting cost c

Notes: Impulse response functions (IRFs) represent the logarithmic deviation from steady state for each variable. IRFs are obtained
by imposing a negative technology shock of �s =�0.0027 to the log-linear model. The time period displayed on the x-axis is 250
weeks. The solid, blue line is under standard parameterization of c = 0.215. The dashed, red line is under low-cost parameterization
of c = 0.066. The dotted, green line is under high-cost parameterization of c = 0.362.

cost c). Qualitatively, the dynamic response of unemployment and its components remains the same: both
unemployment and rationing unemployment increase after a negative technology shock, while frictional
unemployment decreases. The impulse response functions, however, are not easily interpretable because the
steady-state values are so different (especially for rationing unemployment).

I repeat the historical decomposition of unemployment under the two alternative calibrations of recruiting
cost. Figure A5 shows the historical decomposition of unemployment for low recruiting cost (c = 0.066).
Frictional unemployment is always lower under this calibration: it remains below 3.5% at all times. As a
consequence, the amplitude of fluctuations in frictional unemployment is smaller. Since the amplitude of
fluctuations in total unemployment is larger and the amplitude of fluctuations in frictional unemployment
is smaller, the fluctuations of rationing unemployment have much larger amplitude. Figure A6 shows the
historical decomposition of unemployment for high recruiting cost (c = 0.362). It confirms that frictional
unemployment is always higher under this calibration. When unemployment is below 5.5%, it is only
frictional. Frictional unemployment only falls below 3% in the deep recessions of 1981–1983 and 2008–
2009.
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Figure A5: Decomposition of simulated US unemployment, 1964–2009, with low recruiting cost c = 0.066.
Notes: Actual unemployment rate is quarterly average of monthly series constructed by the BLS from the CPS. Simulated un-
employment rate is generated when the model is stimulated by the quarterly technology series constructed from BLS output and
employment data. Actual technology and unemployment are seasonally adjusted. All series are detrended with a HP filter with
smoothing parameter 105. The time period is 1964:Q1–2009:Q2. I solve the (nonlinear) model with the Fair and Taylor [1983]
shooting algorithm. The top graph compares actual and simulated unemployment. The bottom graph decomposes simulated unem-
ployment into frictional unemployment and rationing unemployment.
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Figure A6: Decomposition of simulated US unemployment, 1964–2009, with high recruiting cost c= 0.362.
Notes: Actual unemployment rate is quarterly average of monthly series constructed by the BLS from the CPS. Simulated un-
employment rate is generated when the model is stimulated by the quarterly technology series constructed from BLS output and
employment data. Actual technology and unemployment are seasonally adjusted. All series are detrended with a HP filter with
smoothing parameter 105. The time period is 1964:Q1–2009:Q2. I solve the (nonlinear) model with the Fair and Taylor [1983]
shooting algorithm. The top graph compares actual and simulated unemployment. The bottom graph decomposes simulated unem-
ployment into frictional unemployment and rationing unemployment.
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A4.2 Specification of recruiting cost

In the text I assume, as in Pissarides [2000], that the per-period cost of opening a vacancy is c · at . I now
assume that the per-period cost of opening a vacancy is c, constant and independent of technology. I assume
no randomness at the firm level: a firm fills a job with certainty by opening 1/q(qt) vacancies and spending
c/q(qt). The modification only affects the firm’s optimality condition, which becomes

∂g
∂n(i)

(nt(i),at) =wt(i)+
c

q(qt)
+nt(i) ·

∂w
∂n(i)

(nt(i),qt ,nt ,at)�d · (1� s) ·Et



c
q(qt+1)

�

This modification does not affect the theoretical results of the paper. Clearly, Proposition 1 (showing full
employment in the canonical model when c ! 0), Proposition 2 (showing full employment in the model
with diminishing returns when c ! 0), Proposition 3 (showing full employment in the model with wage
rigidity when c ! 0), and Proposition 4 (proving the existence of of job rationing under wage rigidity and
diminishing marginal returns to labor) remain valid under this alternative specification of the recruiting cost.
Lemma 3 (giving a sufficient condition on wage flexibility g such that inefficient separations do not occur)
also remains valid because the lower bound on g provided by the lemma is independent from c.

Importantly, Proposition 5 (proving the cyclicality of frictional unemployment and rationing unemploy-
ment) remains valid under any reasonable calibration. The firm’s optimality (14), modified to account for
the new specification of the recruiting cost, still implies that dn/da > 0. The expression for rationing unem-
ployment remains the same so that ∂nR/∂a < 0. Differentiating the firm’s optimality (14) with respect to a
yields
(

a · (1�a) · (2�a) ·
Z nF

0

∂nR

∂a
·
�

nR � x
�a�3

dx

)

+

⇢

a · (1�a) · ∂nF

∂a
·na�2

�

= [1�d · (1� s)] · d
da



c/a
q(q)

�

.

For Proposition 5 to remain valid, we need to prove that

d
da



c/a
q(q)

�

� 0. (A18)

It is easy to show that

sign
✓

d
da



c/a
q(q)

�◆

= sign
⇣

h · eq
a �1

⌘

, (A19)

where eq
a ⌘ (a/q) ·dq/da is the elasticity of labor market tightness q with respect to a. We need to determine
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eq
a. From equilibrium equations (3) and (14),

en
q = (1�h) ·u

�a · (1�a) ·na�2 · ∂n
∂q

· ∂q
∂a

= (g�1) ·w ·ag�2 +[1� (1� s) ·d] · c/a
q(q) ·q ·h · ∂q

∂a
� [1� (1� s) ·d] · c/a

q(q)
· 1

a

(1� g) ·w ·ag +[1� (1� s) ·d] · c
q(q)

=



a · (1�a) ·a ·na�1 · en
q +[1� (1� s) ·d] · c

q(q)
·h
�

· eq
a

h · eq
a =

(1� g) ·w+[1� (1� s) ·d] · c/q(q)
(1�a) · 1�h

h ·u · [w+[1� (1� s) ·d] · c/q(q)]+ [1� (1� s) ·d] · c/q(q)

To prove that condition (A19) is true, we need to show that

(1� g)� (1�a) · 1�h
h

·u ·
✓

1+[1� (1� s) ·d] · c/q(q)
w

◆

This condition ensures that the decrease in q in a recession is large enough to offset the increase in the
normalized recruiting cost c/a when a falls. This condition is necessary because we need recruiting to
become cheaper in recessions. The condition does hold for any parameter value: for instance, it cannot hold
if g = 1. But it is valid for a large range of values. It is accepted in the literature that [1�(1�s)d]c/q(q)

w  0.01:
the recruiting cost per worker is no more than 1% of the wage bill [Blanchard and Galı́, 2010; Gertler and
Trigari, 2009; Thomas, 2008]. Hence the condition simplifies to

(1� g)� (1�a) · 1�h
h

·u.

We have 1�a 1. We know from Petrongolo and Pissarides [2001] that h2 [0.5,0.7] such that h/(1�h)
1. Normally, u  0.1. This implies that as long as g  0.9, condition (A18) is true and our result is valid. In
other words, even a small amount of wage rigidity is sufficient for our result to hold.

The question I now examine is whether the alternative specification modifies the quantitative properties
of the model with job rationing. I proceed as in the text to compute simulated moments (presented in
Table A2) and impulse response functions (presented in Figure A7).

Comparing Table A2 with Table 3, it appears that the quantitative properties of the model are barely
affected by this alternative specification. Unemployment, vacancy, and labor market tightness are only
slightly more volatile because (i) recruiting costs are slightly higher in recessions (c · at < c when at < 1),
which increases unemployment above its level in the model in the text; and (ii) recruiting cost is slightly
lower in expansions (c · at > c when at > 1), which reduces unemployment below its level in the text.
Technology, however, only varies in the [0.95,1.05] range in the simulations so c ·a 2 [0.205,0.225] whereas
c = 0.215. The differences in recruiting cost are minor, so the discrepancies in the two sets of simulated
moments are minimal.

The IRFs in Figure A7 confirm that the quantitative properties of the model under the two alternative
specifications are virtually identical. All the IRFs are superposed but for the IRF of unemployment, which
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Table A2: Simulated moments with constant per-period vacancy-posting cost under technology shocks

u v q w y a

Standard Deviation 0.102 0.126 0.222 0.011 0.020 0.016
Autocorrelation 0.906 0.776 0.867 0.828 0.849 0.828

Correlation

1 -0.897 -0.968 -0.980 -0.987 -0.980
– 1 0.979 0.907 0.896 0.907
– – 1 0.964 0.962 0.964
– – – 1 0.999 1.000
– – – – 1 0.999
– – – – – 1

Notes: Results from simulating the log-linearized model with constant per-period vacancy-posting cost c (instead of c · at in the
text) under stochastic technology. All variables are reported in log as deviations from an HP trend with smoothing parameter 105.

confirms that unemployment is slightly less volatile with the specification in the text (vacancy-posting cost
of c ·at) than with this alternative specification (vacancy-posting cost of c). This observation implies that if
the model in the text can match the amplification of technology shocks observed in the data, so could this
alternative model.

A4.3 Gradual wage adjustment

In view of ethnographic evidence it is possible that wage rigidity, in contrast to the model presented, induces
gradual changes in wages in response to shocks. While a gradual change in wages would not modify
the theoretical results of the paper (the results are based on comparative statics), it may be important for
unemployment dynamics. Gertler and Trigari [2009], Gertler et al. [2008], and Sala et al. [2008] study the
impact of staggered wage setting on unemployment dynamics. For tractability, I assume instead that current
wage wt is an average of the past wage wt�1 and the wage schedule used in the text:

wt =
⇥

w ·ag
t
⇤z · [wt�1]

1�z . (A20)

z is the weight placed on the wage schedule that is targeted. If z = 1, we are in the case studied in the text.
If z = 0, wages are completely rigid. In a static environment in which at = a for all t, the wage equals the
wage schedule used in the text.

To study the dynamics of the model under this alternative assumption, I log-linearize the model. The
log-linearized system is the same as in the text, but for the equation giving the log-linearized wage:

w̌t = g ·z · ǎt +(1�z) · w̌t�1.

I calibrate z = 1.6% to match the correlation r̂(w,a) = 0.646 of wages and technology in US data. The
calibration of all other parameters remains the same as in the text. Table A3 reports the simulated moments.
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Figure A7: IRFs to a negative technology shock with constant per-period vacancy-posting cost
Notes: Impulse response functions (IRFs) represent the logarithmic deviation from steady state for each variable. IRFs are obtained
by imposing a negative technology shock of �s = �0.0027 to the log-linear model. The solid, blue IRFs are in the model with
constant per-period vacancy-posting cost c. The dotted, red IRFs are in the model with per-period vacancy-posting cost c ·at (model
presented in the text). The time period displayed on the x-axis is 250 weeks.

The main differences with the moments reported in Table 3 concern the wage. The correlation between
wage w and technology a is 0.668, in line with the empirical correlation of 0.627. The wage, however,
responds less to technology shocks in the model than in the data. In the model, a 1-percent decrease in
technology decreases wages by ew

a = 0.668⇥ 0.007/0.015 = 0.3%. In the data, a 1-percent decrease in
technology decreases wages by 0.7%. To summarize, gradual wage adjustment increased the rigidity of
wages but reduced the correlation of wages with technology.

As shown on the bottom panel of Table A3, increasing the coefficient g does not solve the problem. With
g = 0.8 the volatility of labor market variables is much lower but the flexibility of wages measured by the
elasticity ew

a = 0.669⇥0.008/0.015 = 0.35 remains much too low (it is ew
a = 0.7 in US data). To conclude,

introducing gradual wage adjustment improves the fit of the model along one dimension: wages are less
correlated with technology. But it damages the fit along another dimension: wages are not flexible enough
(the elasticity of wages with respect to technology is too low).

At the same time the moments of the labor market variables u, v, q are remarkably similar to those
reported in the text. This is because the present value of wages paid to each worker for the duration of a
worker-firm match does not change much, even though the timing of wage payments is different. After a
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negative shock the wage does not fall immediately: firm pays more at the beginning. Then the wage falls
and remains lower than under the baseline specification for a while: the firm now pays less.

To better understand the dynamics of the model under this alternative wage-setting mechanism, I compute
impulse response functions. Rationing unemployment is now given by

uR
t = 1�

✓

a ·at�1

wt

◆1/(1�a)
.

After log-linearization, it becomes

ǔR
t =� 1

1�a
· 1�uR

uR · (ǎt�1 � w̌t) .

Figure A8 reports the IRFs, and compares them to those obtained in the baseline model. The IRFs confirm
that (1) the dynamics of unemployment u, vacancy-unemployment ratio q, and output y are not affected; (2)
wages adjust gradually to the technology shock and do not jump down on impact, but the present value of
wages paid to the worker (determined by the area between the x-axis and the IRF) does not change much;
and (3) the impulse responses of rationing and frictional unemployment are larger on impact (because wages
are more rigid on impact).

A4.4 Capacity-adjusted TFP series

Technology is not adjusted for variable factor utilization. Therefore, fluctuations in technology may be partly
endogenous. To address this issue, I construct another series of model-generated unemployment using the
quarterly, utilization-adjusted total factor productivity series (TFP) from Fernald [2009] as the model driving
force. Actual and model-generated unemployment are shown on the bottom graph in Figure A9. The fit of
the model remains good.

Figure A10 presents the decomposition using utilization-adjusted TFP series. The decomposition is
similar to the one obtained with technology as a driving force. This result confirms the robustness of my
finding that fluctuations in the composition of unemployment are large at business cycle frequency.

A4.5 HP filter with smoothing parameter of 1600

In the text I choose a smoothing parameter of 105 for the HP filter to make the numerical analysis comparable
with the results of the literature [Barnichon, 2010; Costain and Reiter, 2008; Elsby and Michaels, 2008;
Kennan, 2010; Mortensen and Nagypál, 2007; Rudanko, 2009; Shimer, 2005]. In this section I show that the
results are not affected if I HP-filter quarterly US data and corresponding simulated series using a smoothing
parameter of 1600. Table A5 reports simulated moments and Table A4 reports their empirical counterparts.

First, I estimate the new series for detrended log technology as an AR(1) process: ln(at+1) = r · ln(at)+

zt+1 with zt+1 ⇠ N(0,s2). I obtain r = 0.982 and s = 0.00264 at weekly frequency. Then, I log-linearize
the model around its steady state and perturb it with i.i.d. technology shocks zt ⇠ N(0,0.00264).
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Table A3: Simulated moments under technology shocks, with gradual wage adjustment

g = 0.7

u v q w y a

Standard Deviation 0.093 0.114 0.202 0.007 0.019 0.015
Autocorrelation 0.904 0.774 0.866 0.975 0.841 0.820

Correlation

1 -0.899 -0.968 -0.716 -0.986 -0.979
– 1 0.980 0.518 0.895 0.905
– – 1 0.621 0.960 0.962
– – – 1 0.687 0.668
– – – – 1 0.998
– – – – – 1

g = 0.8

u v q w y a

Standard Deviation 0.054 0.066 0.117 0.008 0.017 0.015
Autocorrelation 0.900 0.768 0.861 0.976 0.825 0.810

Correlation

1 -0.895 -0.967 -0.718 -0.983 -0.978
– 1 0.979 0.522 0.894 0.899
– – 1 0.625 0.959 0.959
– – – 1 0.682 0.669
– – – – 1 0.999
– – – – – 1

Notes: Results from simulating with stochastic technology the log-linearized model with gradual wage adjustment (A20). The top
panel reports moments when wage flexibility is g = 0.7. The bottom panel reports moments when wage flexibility is g = 0.8. All
variables are reported in log as deviations from an HP trend with smoothing parameter 105.
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Figure A8: IRFs to a negative technology shock with gradual wage adjustment
Notes: Impulse response functions (IRFs) represent the logarithmic deviation from steady state for each variable. IRFs are obtained
by imposing a negative technology shock of �s =�0.0027 to the log-linear model. The time period displayed on the x-axis is 250
weeks. Solid blue line is under gradual wage adjustment (wage schedule (A20)). Dashed red line is under the baseline model from
the text (wage schedule is wt = w ·ag

t ).

The main difference with the moments reported in Table 2 and Table 3 is that standard deviations are
lower for actual and simulated variables. This was expected as a more important fraction of fluctuations is
captured by the trend when the smoothing parameter is smaller (the trend is more volatile). I reach, however,
similar conclusions about the fit of the model using the lower smoothing parameter of 1600:

• The model amplifies technology shocks roughly as much as observed in the data. In US data, a
1-percent decrease in technology increases unemployment by 5.0% and reduces vacancy by 6.7%.
It reduces labor market tightness, measured by the vacancy-unemployment ratio, by 11.6%. In the
model, a 1-percent decrease in technology increases unemployment by 4.2%, reduces vacancy by
4.8%, and reduces labor market tightness by 9.0%.

• Wages respond slightly more to technology shocks in the model than in the data. In the model,
a 1-percent decrease in technology decreases wages by 0.7%. In the data, a 1-percent decrease in
technology decreases wages by 0.5%. Increasing the wage rigidity (by reducing g) would reduce the
response of simulated wages and increase the response of simulated labor market variables, hence
improving the fit of the model.
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Figure A9: Actual unemployment, and unemployment generated from actual TFP, 1964–2009.
Notes: Actual unemployment is the quarterly average of seasonally-adjusted monthly series constructed by the BLS from the CPS.
Predicted unemployment is generated when the model is stimulated by the quarterly, utilization-adjusted TFP series constructed
by Fernald [2009]. Actual TFP, actual unemployment and predicted unemployment are detrended with a HP filter with smoothing
parameter 105. The period is 1964:Q1–2009:Q2. I solve the nonlinear model with the Fair and Taylor [1983] shooting algorithm.
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Figure A10: Decomposition of unemployment generated from actual TFP, 1964–2009.
Notes: The graph decomposes the unemployment series generated when the nonlinear model is stimulated by the detrended,
quarterly, utilization-adjusted TFP series constructed by Fernald [2009]. The period is 1964:Q1–2009:Q2. I solve the nonlinear
model with the Fair and Taylor [1983] shooting algorithm. Frictional and rationing unemployment are constructed from (18) and
(19).
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• Simulated and empirical slopes of the Beveridge curve are close. In the model the slope is -0.79,
whereas it is -0.95 in the data.

• The main weakness of the model is that the correlations of labor market variables and wages with
technology remain much too high compared with the data.

A5 Comparison of Different Numerical Solution Methods

Figure A11 compares the time series for unemployment and labor market tightness generated by the model
with two different numerical solution methods: (i) a series of equilibria in static environments that abstract
from aggregate shocks to technology and dynamics of unemployment; and (ii) the exact solution to the
nonlinear model, which accounts fully for the dynamics of unemployment and rational expectations of
stochastic process of technology and labor market variables.

The series of equilibria in a static environment is obtained by solving the system of three equations—
definition of unemployment, Beveridge curve, and firm’s optimality condition—to determine employment,
unemployment, and labor market tightness for a series of technology levels. I plot the resulting unemploy-
ment and labor market tightness series.

The exact solution to the model is obtained by using the Fair and Taylor [1983] shooting algorithm.
This algorithm solves dynamic rational expectation models period by period, by iterating in each period
over the path of expected values for endogenous (employment and labor market tightness) and exogenous
(technology) variables, until this path converges from an arbitrary path to a path of rational expectations,
consistent with the predictions of the model.

While the time series obtained with these two numerical solution methods are quantitatively different,
they are qualitatively similar. The main difference between these two labor market tightness series is that
qt spikes and plummets more drastically with the steady-state solution method. This is because after a
positive technology shock, firms do not take into account the fact that technology will eventually revert to
a lower mean value, making recruiting less profitable. Therefore, firms are predicted to recruit too much
in the steady-state solution method after a positive shock. For the same reason, firms are predicted to
recruit too little after a negative shock, because they do not expect that technology will eventually revert to
a higher mean value. This discrepancy in the predicted recruiting behavior of firms also affects predicted
unemployment, but the difference between the two series is relatively small. To conclude, solving the model
without accounting for aggregate shocks offers a good approximation to the exact solution.

A6 Calibration of Existing Search-and-Matching Models

I follow the same calibration strategy as in the text. All calibrated parameters are summarized in Table A6.
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Table A4: Summary statistics, quarterly US data, 1964–2009. HP-parameter: 1600.

u v q w y a

Standard Deviation 0.117 0.134 0.246 0.011 0.021 0.014
Autocorrelation 0.897 0.915 0.910 0.886 0.864 0.808

Correlation

1 -0.947 -0.984 -0.222 -0.859 -0.595
– 1 0.989 0.319 0.907 0.701
– – 1 0.277 0.898 0.662
– – – 1 0.439 0.555
– – – – 1 0.903
– – – – – 1

Notes: All data are seasonally adjusted. The sample period is 1964:Q1–2009:Q2. Unemployment rate u is quarterly average of
monthly series constructed by the BLS from the CPS. Vacancy rate v is quarterly average of monthly series constructed by merging
data constructed by the BLS from the JOLTS and data from the Conference Board, as detailed in the text. Labor market tightness
q is the ratio of vacancy to unemployment. Real wage w is quarterly, average hourly earning in the nonfarm business sector,
constructed by the BLS CES program, and deflated by the quarterly average of monthly CPI for all urban households, constructed
by BLS. y is quarterly real output in the nonfarm business sector constructed by the BLS MSPC program. ln(a) is computed as the
residual ln(y)�a · ln(n) where n is quarterly employment in the nonfarm business sector constructed by the BLS MSPC program.
All variables are reported in log as deviations from an HP trend with smoothing parameter 1600.

Table A5: Simulated moments with technology shocks. HP-parameter: 1600.

u v q w y a

Standard Deviation 0.044 0.060 0.098 0.007 0.012 0.010
Autocorrelation 0.776 0.537 0.693 0.616 0.646 0.616

Correlation

1 -0.788 -0.926 -0.955 -0.967 -0.955
– 1 0.962 0.804 0.788 0.804
– – 1 0.916 0.911 0.916
– – – 1 0.998 1.000
– – – – 1 0.998
– – – – – 1

Notes: Results from simulating the log-linearized model with stochastic technology. All variables are reported in log as deviations
from an HP trend with smoothing parameter 1600.
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Figure A11: Labor market tightness and unemployment across solution methods.

Table A6: Parameter values for existing search-and-matching models (weekly frequency)

Interpretation Value Source

Canonical model:
c Recruiting cost 0.32 0.32⇥ steady-state wage
b Worker’s bargaining power 0.86 Matches unemployment = 5.8%

Model with wage rigidity:
c Recruiting cost 0.32 0.32⇥ steady-state wage
w Steady-state real wage 0.991 Matches unemployment = 5.8%

Model with diminishing returns:
c Recruiting cost 0.22 0.32⇥ steady-state wage
a Returns to labor 0.21 Matches labor share= 0.66
b Worker’s bargaining power 0.86 Matches unemployment = 5.8%

A6.1 Canonical model

In steady-state c = 0.32⇥w, so the firm’s optimality condition becomes

1�d · (1� s)
q(q)

=
1�w

0.32 ·w .

I target u = 5.8%, or equivalently q = 0.45. This pins down w = 0.990, and c = 0.32. Then, in steady state,
equilibrium condition (10) becomes

1�d · (1� s)
q(q)

+b ·d · (1� s) ·q = (1�b) · 1
c
,

which pins down the bargaining power b = 0.86.
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A6.2 Model with wage rigidity

In steady-state, w = w and c = 0.32 ·w, so the firm’s optimality condition becomes

1�d · (1� s)
q(q)

=
1�w

0.32 ·w .

I target u = 5.8%, or equivalently q = 0.45. This pins down w = 0.990, and c = 0.32.

A6.3 Model with diminishing returns

Let k ⌘ a/ [1�b · (1�a)]. The steady-state wage equation, equilibrium condition (12), and definition of
the labor share are

w = b ·
⇥

k ·na�1 + c · (1� s) ·d ·q
⇤

(A21)

(1�b) ·k ·na�1 = [1�d · (1� s)]
c

q(q)
+ c · (1� s) ·d ·b ·q (A22)

ls = w ·n1�a. (A23)

Combining (A21), (A22), and (A23), and using c = 0.32⇥w yields:

k =



[1�d · (1� s)] · 0.32
q(q)

+1
�

ls (A24)

ls = w ·n1�a (A25)

w = b
⇥

k ·na�1 + c · (1� s) ·d ·q
⇤

. (A26)

Equation (A24) identifies k = 0.67, as I target ls = 0.66 and q = 0.45. Equation (A25) determines w = 0.69,
as I target n = 0.95. Finally, (A26) determines b = 0.86, and a = (k�k ·b)/(1�k ·b) = 0.21.
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