Product Market and Market Tightness

Pascal Michaillat https://pascalmichaillat.org/c2/

- Households produce \& sol services: cs also aggnegade productive capacity
- Households vioit shops to buy service: cs also aggregate A of visits
- Number of trades $=$ \# of services sold
= 4 service bought $=$ output : y
- Output is determined by CES matching function (because it satisfies $y \leqslant \min (k, v))$

$$
\gamma>0
$$

- Market tightress:

$$
x=\frac{v}{k}
$$

- Selling probability.

$$
\begin{aligned}
& f(x)=\frac{f}{k}=\frac{\left[k^{-r}+v^{-r}\right]^{-1 / r}}{k} \\
&=\left[(k / k)^{-r}+(v / k)^{-r}\right]_{(b y(k)}^{-1 / r} \\
& f(x)=\left[1+x^{-r}\right]^{-1 / r} \\
& f^{\prime}(x)>0 \\
& f(\infty)>1
\end{aligned}
$$

more likely to sell in tighter market

- Burying probability:

$$
\begin{aligned}
q(x) & =\frac{y}{v}=\frac{\left[k^{-r}+v^{-r}\right]^{-1 / r}}{v} \\
& =\left[(k / v)^{-\gamma}+(v / v)^{-r}\right]^{-1 / r}(\text { (RS) } \\
& =\left[(1 / x)^{-\gamma}+1\right]_{-1 / \gamma}^{-1 / \gamma} \\
q(x) & =\left[1+x^{\gamma}\right]^{-1 / \gamma} \cdot q(\infty)=0 \\
\cdot q(0) & =1 \\
\cdot q^{\prime}(x) & <0
\end{aligned}
$$

\rightarrow less likely to be able to buy in a
tighter manket

