Quiz on Unemployment Fluctuations

Pascal Michaillat

Question 1

In the United States, which correlation do we observe over the business cycle?

- A) Unemployment level and labor market tightness are positively correlated.
- B) Employment level and labor market tightness are positively correlated.
- C) Unemployment level and vacancies are positively correlated.
- D) Unemployment level and employment level are positively correlated.
- E) Unemployment level and labor force participation are positively correlated.
- F) None of the above.

Question 2

In the matching model with fixed wage, which type of shocks can generate the correlation described in the previous question?

- A) Shocks to labor productivity
- B) Shocks to the size of the labor force
- C) Shocks to the disutility from unemployment
- D) Shocks to monetary policy
- E) No shocks can generate such correlation

Question 3

Consider a matching model with surplus sharing and a linear production function. Assume that the value of unemployment is z > 0 and that the bargaining power of firms is 1. Then an increase in labor productivity a leads to:

- A) Higher tightness and lower unemployment
- B) Lower tightness and higher unemployment
- C) Higher tightness and higher unemployment
- D) Lower tightness and lower unemployment
- E) No effect on tightness and unemployment

Question 4

Let $c(x) = a(x) \times b(x)/d(x)$. Let ϵ_x^a , ϵ_x^b , ϵ_x^c , and ϵ_x^d be the elasticities of the functions a, b, c, and d with respect to x. Then:

A)
$$\epsilon_{x}^{c} = \epsilon_{x}^{a} \times \frac{\epsilon_{x}^{b}}{\epsilon_{x}^{d}}$$

B)
$$\epsilon_x^c = \frac{a(x)}{d(x)} \epsilon_x^a + \frac{b(x)}{d(x)} \epsilon_x^b$$

C)
$$\epsilon_x^c = \ln(a(x)) + \ln(b(x)) - \ln(d(x))$$

D)
$$\epsilon_x^c = \epsilon_x^a + \epsilon_x^b - \epsilon_x^d$$

E) None of the above

Question 5

Let f(x, y) be a function of x and y. Let $\partial f/\partial x$ and $\partial f/\partial y$ be the partial derivatives of the function f with respect to x and y. Let $\varepsilon_x^f = \partial \ln(f)/\partial \ln(x)$ and $\varepsilon_y^f = \partial \ln(f)/\partial \ln(y)$ be the partial elasticities of the function f with respect to x and y. Then the infinitesimal change in f generated by infinitesimal changes in f and f satisfies:

A)
$$df = \epsilon_x^f \cdot dx + \epsilon_y^f \cdot dy$$

B)
$$d \ln f = \epsilon_x^f \cdot dx + \epsilon_y^f \cdot dy$$

C)
$$d \ln f = [\partial f/\partial x] dx + [\partial f/\partial y] dy$$

D)
$$df = \epsilon_x^f \cdot d \ln x + \epsilon_y^f \cdot d \ln y$$

E)
$$d \ln f = \epsilon_x^f \cdot d \ln x + \epsilon_y^f \cdot d \ln y$$

F) None of the above

Question 6

Let $c(x) = [b \cdot a(x)]^d$, where a(x) > 0 and b > 0 and d < 0. Let ϵ_x^c and ϵ_x^a be the elasticities of the functions c and a with respect to x. Then:

A)
$$\epsilon_x^c = [b \cdot \epsilon_x^a]^d$$

B)
$$\epsilon_x^c = d \cdot [\epsilon_x^a + b]$$

C)
$$\epsilon_x^c = [b+d] \cdot \epsilon_x^a$$

D)
$$\epsilon_x^c = d \cdot \epsilon_x^a$$

E)
$$\epsilon_x^c = b \cdot \epsilon_x^a$$

F)
$$\epsilon_x^c = d \cdot [b \cdot a(x)]^{d-1}$$

G) None of the above

Question 7

Let c(x) = a(x) + b, where a(x) > 0 and b > 0. Let ϵ_x^c and ϵ_x^a be the elasticities of the functions c and a with respect to x. Then

A)
$$\epsilon_x^c = \epsilon_x^a$$

B)
$$\epsilon_x^c = \epsilon_x^a + b$$

C)
$$\epsilon_x^c = \frac{a(x)}{c(x)} \epsilon_x^a$$

D)
$$\epsilon_x^c = \frac{b}{c(x)} \epsilon_x^a$$

E)
$$\epsilon_x^c = \frac{a(x)}{b} \epsilon_x^a$$

F)
$$\epsilon_x^c = \frac{a(x)}{c(x)} \epsilon_x^a + \frac{b}{c(x)}$$

G) None of the above

Question 8

Consider a one-period matching model with a labor force of size 1. All workers are initially unemployed; firms post vacancies and match with workers; then production occurs. The matching function is $m = \sqrt{V}$. Firms incur a recruiting cost of r > 0 recruiters per vacancy. Firms have a production function $y = 2 \times a \times \sqrt{N}$, where a governs labor productivity and N denotes the number of producers in the firm. Firms pay a rigid wage: $w = a^{\gamma}$ with $\gamma < 1$. What is the elasticity of vacancies V with respect to productivity a in the model?

A)
$$\epsilon_a^V = (1 - \gamma) \cdot (1 + \tau)$$

B)
$$\epsilon_a^V = 4 \cdot \frac{1-\gamma}{1+\tau}$$

C)
$$\epsilon_a^V = 2 \cdot \frac{1+\tau}{1-\gamma}$$

D)
$$\epsilon_a^V = 4 \cdot (1 - \gamma) - \tau$$

E)
$$\epsilon_a^V = 2 \cdot \gamma - r$$

F)
$$\epsilon_a^V = 0$$

G) None of the above

Question 9

Under a standard US calibration, what is the value of the elasticity computed in the previous question?

A)
$$\epsilon_a^V < 0$$

B)
$$\epsilon_a^V \in [0,1]$$

C)
$$\epsilon_a^V \in (1,2]$$

D)
$$\epsilon_a^V \in (2,3]$$

E)
$$\epsilon_a^V \in (3,4]$$

F)
$$\epsilon_a^V \in (4,5]$$

G)
$$\epsilon_a^V > 5$$

Question 10

Consider a matching model with rigid wage. Then after a negative labor demand shock:

- A) The unemployment rate is lower.
- B) The probability of losing a job in a given month is higher.
- C) The probability of losing a job in a given month is lower.
- D) The probability of finding a job in a given month is lower.
- E) The probability of finding a job in a given month is higher.
- F) The probability of filling a vacancy in a given month is higher.

- G) The probability of filling a vacancy in a given month is lower.
- H) None of the above.