BEVERIDGEAN UNEMPLOYMENT GAP

Pascal Michaillat, Emmanuel Saez

Journal of Public Economics Plus, 2021

Paper available at https://pascalmichaillat.org/9/

DOES THE LABOR MARKET OPERATE EFFICIENTLY?

- we develop welfare-based measure of unemployment gap
 - = actual unemployment rate efficient unemployment rate
- \rightsquigarrow model design
 - bargained wages or competitive search?
 - rigid wages?
- → distance from "full employment"
- \rightsquigarrow optimal macro policies
 - monetary policy
 - fiscal policy
 - unemployment insurance

THEORY

US BEVERIDGE CURVE

US BEVERIDGE CURVE

UNEMPLOYMENT GAP

UNEMPLOYMENT GAP

BEVERIDGEAN MODEL OF LABOR MARKET

- 1. Beveridge curve: *v*(*u*)
 - *v*: vacancy rate
 - u: unemployment rate
 - v(u): decreasing in u, convex
- 2. social welfare: $\widehat{W}(u, v) = W(n, u, v)$ with n = 1 u
 - *n*: employment rate
 - W: production + recruiting + preferences
 - $-\widehat{\mathcal{W}}(u,v)$: decreasing in *u* and *v*, quasiconcave

- efficiency at tangency point: $v'(u) = MRS_{uv}$
- decomposing the social marginal rate of substitution:

$$MRS_{uv} = -\frac{\partial\widehat{\mathcal{W}}/\partial u}{\partial\widehat{\mathcal{W}}/\partial v}$$

- social value of nonwork: $\zeta = (\partial \mathcal{W} / \partial u) / (\partial \mathcal{W} / \partial n) < 1$
- recruiting cost: $\kappa = -(\partial W/\partial v)/(\partial W/\partial n) > 0$
- efficiency condition:

$$v'(u) = -\frac{1-\zeta}{\kappa}$$

- efficiency at tangency point: $v'(u) = MRS_{uv}$
- decomposing the social marginal rate of substitution:

$$MRS_{uv} = -\frac{\partial \mathcal{W}/\partial u - \partial \mathcal{W}/\partial n}{\partial \mathcal{W}/\partial v}$$

- social value of nonwork: $\zeta = (\partial W / \partial u) / (\partial W / \partial n) < 1$
- recruiting cost: $\kappa = -(\partial \mathcal{W}/\partial v)/(\partial \mathcal{W}/\partial n) > 0$
- efficiency condition:

$$v'(u) = -\frac{1-\zeta}{\kappa}$$

- efficiency at tangency point: $v'(u) = MRS_{uv}$
- decomposing the social marginal rate of substitution:

$$MRS_{uv} = -\frac{1 - (\partial \mathcal{W}/\partial u)/(\partial \mathcal{W}/\partial n)}{-(\partial \mathcal{W}/\partial v)/(\partial \mathcal{W}/\partial n)}$$

- social value of nonwork: $\zeta = (\partial W/\partial u)/(\partial W/\partial n) < 1$
- recruiting cost: $\kappa = -(\partial \mathcal{W}/\partial v)/(\partial \mathcal{W}/\partial n) > 0$
- efficiency condition:

$$v'(u) = -\frac{1-\zeta}{\kappa}$$

- efficiency at tangency point: $v'(u) = MRS_{uv}$
- decomposing the social marginal rate of substitution:

$$MRS_{uv} = -\frac{1 - (\partial \mathcal{W}/\partial u)/(\partial \mathcal{W}/\partial n)}{-(\partial \mathcal{W}/\partial v)/(\partial \mathcal{W}/\partial n)}$$

- social value of nonwork: $\zeta = (\partial \mathcal{W} / \partial u) / (\partial \mathcal{W} / \partial n) < 1$
- recruiting cost: $\kappa = -(\partial \mathcal{W}/\partial v)/(\partial \mathcal{W}/\partial n) > 0$
- efficiency condition:

$$v'(u) = -\frac{1-\zeta}{\kappa}$$

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) > 0$
- efficient labor market tightness:

$$v'(u) = -\frac{1-\zeta}{\kappa}$$

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) > 0$
- efficient labor market tightness:

$$-\frac{v'(u)}{v/u}\cdot\frac{v}{u}=\frac{1-\zeta}{\kappa}$$

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) > 0$
- efficient labor market tightness:

$$\theta = \frac{1-\zeta}{\kappa \cdot \epsilon}$$

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) > 0$
- efficient labor market tightness:

$$\theta^* = \frac{1-\zeta}{\kappa \cdot \epsilon}$$

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) > 0$
- efficient labor market tightness:

$$\theta^* = \frac{1-\zeta}{\kappa \cdot \epsilon}$$

$$\frac{u^*}{u} = \left(\frac{\theta^*}{\theta}\right)^{-1/(1+\epsilon)}$$

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) > 0$
- efficient labor market tightness:

$$\theta^* = \frac{1-\zeta}{\kappa \cdot \epsilon}$$

$$u^* = \left(\frac{\kappa \cdot \epsilon}{1 - \zeta} \cdot \frac{v}{u^{-\epsilon}}\right)^{1/(1+\epsilon)}$$

APPLICATION TO THE UNITED STATES

UNEMPLOYMENT RATE (CPS)

VACANCY RATE (BARNICHON 2010 & JOLTS)

BEVERIDGE ELASTICITY (BAI, PERRON 1998)

SOCIAL VALUE OF NONWORK

- Borgschulte, Martorell (2018): natural experiment using military administrative data
 - 420,000 veterans
 - home production + recreation = 13%–35% earnings
- Mas, Pallais (2019): field experiment in which job applicants choose wage-hour bundles
 - 900 subjects
 - home production + recreation = 58% earnings
- $\rightsquigarrow \ \zeta \in$ [0.03, 0.49], with median value of ζ = 0.26

RECRUITING COST

- 1997 National Employer Survey, administered by Census Bureau
 - 2,000 establishments
 - establishments have \geq 20 workers
 - establishments belong to all industries
- recruiting = 3.2% of labor costs

~→ κ = 0.92

EFFICIENT TIGHTNESS & TIGHTNESS GAP

EFFICIENT UNEMPLOYMENT & UNEMPLOYMENT GAP

COMPARISON WITH EXISTING "NATURAL RATES"

ALTERNATIVE CALIBRATIONS OF STATISTICS

BEVERIDGE ELASTICITY IN 95% CI

INVERSE-OPTIMUM ϵ , so $u = u^*$

PLAUSIBLE SOCIAL VALUES OF NONWORK

INVERSE-OPTIMUM ζ , SO $u = u^*$

PLAUSIBLE RECRUITING COSTS

INVERSE-OPTIMUM κ , so $u = u^*$

hagedorn, manovskii (2008): $\zeta = 0.96$

APPLICATION TO

DIAMOND-MORTENSEN-PISSARIDES MODEL

UNEMPLOYMENT: ON DMP BEVERIDGE CURVE

UNEMPLOYMENT: ON DMP BEVERIDGE CURVE

SUFFICIENT STATISTICS IN DMP MODEL

Beveridge curve: UE flows = EU flows

$$v(u) = \left[\frac{\lambda \cdot (1-u)}{\omega \cdot u^{\eta}}\right]^{1/(1-\eta)}$$

→ Beveridge elasticity:

$$\epsilon = \frac{1}{1 - \eta} \left[\eta + \frac{u}{1 - u} \right]$$

- social welfare: $\mathcal{W}(n, u, v) = p \cdot (n + z \cdot u c \cdot v)$
- \rightsquigarrow social value of nonwork: $\zeta = z$
- $\sim \rightarrow$ recruiting cost: $\kappa = c$

DMP BUSINESS CYCLES IN BEVERIDGE DIAGRAM

DMP BUSINESS CYCLES IN BEVERIDGE DIAGRAM

DMP BUSINESS CYCLES IN BEVERIDGE DIAGRAM

BEVERIDGEAN EFFICIENCY pprox HOSIOSIAN EFFICIENCY

BEVERIDGEAN EFFICIENCY pprox HOSIOSIAN EFFICIENCY

CONCLUSION

SUMMARY

- socially efficient unemployment rate u^* & unemployment gap
 - $u u^*$ are determined by 3 sufficient statistics
 - elasticity of Beveridge curve
 - social cost of unemployment
 - cost of recruiting
- in the United States, 1951–2019:
 - − u^* averages 4.3% $\rightsquigarrow u u^*$ averages 1.4pp
 - $3.0\% < u^* < 5.4\% \rightsquigarrow u u^*$ is countercyclical
 - → labor market is inefficient
 - \rightsquigarrow labor market is inefficiently slack in slumps

IMPLICATIONS FOR MODEL DESIGN

- models featuring an efficient labor market are inconsistent with our findings
 - DMP model with Hosios (1990) condition
 - models with competitive-search equilibrium (Moen 1997)
- models producing a countercyclical unemployment gap are consistent with our findings
 - DMP model with bargaining-power shocks (Shimer 2005)
 - variant of the DMP model with rigid wages (Hall 2005)

IMPLICATIONS FOR POLICY DESIGN

- optimal nominal interest rate is procyclical
 - optimal for monetary policy to eliminate the unemployment gap (Michaillat, Saez 2021)
 - unemployment ↑ when interest rate ↑ (Coibion 2012)
- optimal government spending is countercyclical
 - optimal for government spending to reduce—but not eliminate—the unemployment gap (Michaillat, Saez 2019)
 - unemployment \downarrow when spending \uparrow (Ramey 2013)

IMPLICATIONS FOR POLICY DESIGN

- optimal unemployment insurance is countercyclical
 - US tightness gap is procyclical
 - optimal for unemployment insurance to reduce the tightness gap (Landais, Michaillat, Saez 2018)
 - tightness ↑ when unemployment insurance ↑ (Landais, Michaillat, Saez 2018)