PRICING UNDER FAIRNESS CONCERNS

Erik Eyster, Kristof Madarasz, Pascal Michaillat

Journal of the European Economic Association, 2021

Paper available at https://pascalmichaillat.org/8/

CUSTOMERS \& FIRMS CARE ABOUT FAIR PRICES

- evidence from marketing, psychology, sociology, economics
- but pricing models never invoke fairness
\rightsquigarrow pricing models do not have realistic microfoundations
- particularly problematic as these models are used for policy
- example: Calvo pricing \& monetary policy
- exception: theory by Rotemberg [2005]
- but somewhat difficult to analyze \& port to other models

THIS PAPER: TRACTABLE THEORY OF FAIR PRICING

- firms set prices to maximize profits given that
- customers care about the fairness of markups
- customers systematically misperceive markups
- in monopoly model:
- price rigidity (incomplete passthrough of costs into prices)
- in New Keynesian model:
- short-run \& long-run nonneutrality of monetary policy

EVIDENCE THAT FAIRNESS MATTERS

FIRMS ATTRIBUTE PRICE RIGIDITY TO FAIRNESS

- 12,000 firms in the US, Canada, Europe, Japan say that they "tacitly agree to stabilize prices, perhaps out of fairness to customers"
- Blinder et al [1998], Fabiani et al [2005], etc.
- median rank of macro theories of price rigidity:
- nominal contracts: 3/11
- menu costs: 9/11
- informational frictions: 11/11

HIGHER PRICE DUE TO HIGHER MARKUP IS UNFAIR

- Kahneman, Knetsch, Thaler [1986]: "A hardware store has been selling snow shovels for $\$ 15$. The morning after a large snowstorm, the store raises the price to $\$ 20 . "$
- acceptable: 18\%
- unfair: 82\%

BUT HIGHER PRICE WITH SAME MARKUP IS FAIR

- Kahneman, Knetsch, Thaler [1986]: "Due to a transportation mixup, the wholesale price of lettuce has increased. A grocer has bought lettuce at a price that is 30 cents per head higher than normal. The grocer raises the price of lettuce to customers by 30 cents per head."
- acceptable: 79\%
- unfair: 21\%

FIRMS UNDERSTAND NORMS OF FAIRNESS

- Blinder et al [1998] surveyed 300 firms in the US
- 64\% of firms: "customers do not tolerate price increases after increases in demand"
- 71% of firms: "customers do tolerate price increases after increases in cost"

EVEN GOD CARES ABOUT MARKUPS

- Talmudic law: maximum markup allowable in trade $=20 \%$
- legal texts also regulate markups:
- price of bread in France, 1700-1970
- public utilities in the US
- anti-price-gouging legislation in most US states

MONEY ILLUSION SUGGESTS MISINFERENCE

- Shafir, Diamond, Tversky [1997]: "Imagine that within a six-month period all salaries and all prices went up by 25%. You now earn and spend 25% more than before. Six months ago, you were planning to buy a leather armchair whose price during the 6 -month period went up from $\$ 400$ to $\$ 500$. Would you be more or less likely to buy the armchair now?"
- as or more likely: 62\%
- less likely: 38\%

MONOPOLY MODEL

WITH FAIRNESS CONCERNS

CUSTOMERS

- given price of consumption P, wealth W, and fairness function F
- choose money balances B and consumption Y
- to maximize quasilinear utility

$$
\frac{\epsilon}{\epsilon-1}(F \cdot Y)^{(\epsilon-1) / \epsilon}+B
$$

- subject to budget constraint $B+P \cdot Y=W$
- different from social-preference approach to fairness
- Rabin [1993] \rightsquigarrow Rotemberg [2005]

FAIRNESS FUNCTION F

- argument: perceived markup $M^{P}=P / C^{P}$
- P: observed price
- C^{p} : perception of hidden marginal cost
- positive: $F\left(M^{P}\right)>0$
- decreasing: $F^{\prime}\left(M^{P}\right)<0$
- higher markups are less fair
- linear or concave: $F^{\prime \prime}\left(M^{P}\right) \leq 0$
- stronger response to increases in price than decreases

EXAMPLES OF FAIRNESS FUNCTION

EXAMPLES OF FAIRNESS FUNCTION

PERCEIVED MARGINAL COST

$$
C^{p}(P)=\left(C^{b}\right)^{\gamma} \cdot\left[\frac{P}{\epsilon /(\epsilon-1)}\right]^{1-\gamma}
$$

- C^{b} : prior belief about monopoly's marginal cost
- $P /[\epsilon /(\epsilon-1)]$: marginal cost with rational customers
- $\gamma \in(0,1]$: amount of misinference
- $\gamma=0$: rational inference
- $0<\gamma<1$: some inference, but less than rational
- $\gamma=1$: no inference

PERCEIVED MARKUP

$$
M^{p}(P)=\frac{P}{C^{p}(P)}=\left(\frac{\epsilon}{\epsilon-1}\right)^{1-\gamma}\left(\frac{P}{C^{b}}\right)^{\gamma}
$$

- misinference ($\gamma>0$): M^{p} increasing in P
- when a price rises due to a cost increase, customers partially misattribute the higher price to a higher markup
- rational inference $(\gamma=0)$: constant M^{p}
- when a price rises due to a cost increase, customers realize that the profit-maximizing markup is constant

DEMAND CURVE

$$
Y^{d}(P)=P^{-\epsilon} \cdot F\left(M^{p}(P)\right)^{\epsilon-1}
$$

- $P^{-\epsilon}$: traditional effect of price on demand
- price \rightsquigarrow customers' budget sets \rightsquigarrow demand
- $F\left(M^{P}(P)\right)^{\epsilon-1}$: effect of price on demand through fairness
- price \rightsquigarrow perceived markup \rightsquigarrow perceived fairness
\rightsquigarrow marginal utility of consumption \rightsquigarrow demand

MONOPOLY

- given marginal cost of production C
- unobservable to customers
- chooses output Y and price P
- to maximize profits $Y \cdot(P-C)$
- subject to customers' demand $Y=Y^{d}(P)$

PROFIT-MAXIMIZING PRICE

- profit-maximizing price:

$$
P=M \cdot C
$$

- M: profit-maximizing markup

$$
M=\frac{E}{E-1}
$$

- E: (positive) elasticity of demand wrt price

$$
E=-\frac{P}{Y^{d}} \cdot \frac{d Y^{d}}{d P}
$$

PRICE ELASTICITY OF DEMAND

- $\gamma^{d}(P)=P^{-\epsilon} \cdot F\left(M^{P}(P)\right)^{\epsilon-1}$
- price elasticity of perceived markup $=\gamma$
- $\phi\left(M^{p}\right)=$ (positive) elasticity of fairness function wrt markup
- then we obtain:

$$
E(P)=\epsilon+(\epsilon-1) \cdot \gamma \cdot \phi\left(M^{p}(P)\right)
$$

- fairness operates through term $(\epsilon-1) \cdot \gamma \cdot \phi\left(M^{P}(P)\right)$ in price elasticity of demand

ELASTICITY OF FAIRNESS FUNCTION WRT MARKUP

$$
\phi\left(M^{p}\right)=-\frac{M^{p}}{F\left(M^{p}\right)} \cdot \frac{d F}{d M^{p}}
$$

- $\phi>0$
- because $F>0$
- and $F^{\prime}<0$
- ϕ increasing in M^{p}
- because F is decreasing in M^{P}
- and $-F^{\prime}$ is weakly increasing in M^{p} (concavity of F)

NO FAIRNESS CONCERNS \rightsquigarrow FLEXIBLE PRICES

$$
\begin{gathered}
E(P)=\epsilon+(\epsilon-1) \cdot \gamma \cdot \phi\left(M^{P}(P)\right) \\
=0
\end{gathered}
$$

- standard price elasticity of demand: $E=\epsilon$
- standard markup: $M=\epsilon /(\epsilon-1)$
- passthrough of marginal costs into prices = 100\%
- because markup is constant

RATIONAL INFERENCE \rightsquigarrow FLEXIBLE PRICES

$$
E(P)=\epsilon+(\epsilon-1) \cdot \underset{=0}{\gamma} \cdot \phi\left(M^{P}(P)\right)
$$

- standard price elasticity of demand: $E=\epsilon$
- standard markup: $M=\epsilon /(\epsilon-1)$
- marginal-cost passthrough = 100\%
- because markup is constant

FAIRNESS \& MISINFERENCE \rightsquigarrow MORE COMPETITION

$$
E(P)=\epsilon+(\epsilon-1) \cdot \underset{>0}{\gamma} \cdot \phi\left(M_{>0}^{P}(P)\right)
$$

price elasticity of demand is higher: $E>\epsilon$

- markup is lower:

$$
M=\frac{E}{E-1}<\frac{\epsilon}{\epsilon-1}
$$

FAIRNESS \& MISINFERENCE \rightsquigarrow PRICE RIGIDITY

- equilibrium markup is a fixed point:

$$
M=\frac{E(M \cdot C)}{E(M \cdot C)-1}
$$

- equilibrium markup satisfies

$$
M=1+\frac{1}{\epsilon-1} \cdot \frac{1}{1+\gamma \cdot \phi\left(M^{p}(M \cdot C)\right)}
$$

\rightsquigarrow marginal-cost passthrough < 100\%

- because markup \downarrow when marginal cost \uparrow

EVIDENCE OF INCOMPLETE PASSTHROUGH

- labor-cost shocks in Sweden: passthrough = 30\%
- Carlsson, Skans [2012]
- reduction in import tariff in India: passthrough =30\%-40\%
- De Loecker et al [2016]
- marginal-cost shocks in Mexico: passthrough $=20 \%-40 \%$
- Caselli, Chatterjee, Woodland [2017]
- energy-price shocks in the US: passthrough $=50 \%-70 \%$
- Ganapati, Shapiro, Walker [2020]

NEW KEYNESIAN MODEL

WITH FAIRNESS CONCERNS

FAIRNESS CONCERNS

- fairness-adjusted consumption of good i by household j :

$$
z_{i j}=F_{i}\left(M_{i}^{p}\left(P_{i}\right)\right) \cdot Y_{i j}
$$

- fairness-adjusted consumption by household j is aggregated:

$$
Z_{j}=\left[\int_{0}^{1} z_{i j}^{(\epsilon-1) / \epsilon} d i\right]^{\epsilon /(\epsilon-1)}
$$

- consumption index Z_{j} enters utility

$$
\mathbb{E}_{0}\left(\sum \delta^{t}\left[\ln \left(Z_{j}\right)-\frac{N_{j}(t)^{1+\eta}}{1+\eta}\right]\right)
$$

MISINFERENCE

- endogenize parameter C^{b} using past belief
- perceived marginal cost of good i in period t :

$$
c_{i}^{p}(t)=\left[c_{i}^{p}(t-1)\right]^{\gamma} \cdot\left[\frac{P_{i}(t)}{\epsilon /(\epsilon-1)}\right]^{1-\gamma}
$$

- $\gamma \in(0,1]$: misinference

SHORT-RUN MONETARY NONNEUTRALITY

- 3 equilibrium variables: $\widehat{m^{P}}(t), \widehat{n}(t)$, and $\widehat{\pi}(t)$
- belief dynamics: $\widehat{m^{p}}(t)=\gamma \cdot\left[\widehat{\pi}(t)+\widehat{m^{p}}(t-1)\right]$
- IS equation:

$$
\alpha \widehat{n}(t)+\psi \widehat{\pi}(t)=\alpha \mathbb{E}_{t}(\widehat{n}(t+1))+\mathbb{E}_{t}(\widehat{\pi}(t+1))-s(t)
$$

- short-run Phillips curve

$$
(1-\delta \gamma) \widehat{m^{p}}(t)-\lambda_{1} \widehat{n}(t)=\delta \gamma \mathbb{E}_{t}(\widehat{\pi}(t+1))-\lambda_{2} \mathbb{E}_{t}(\widehat{n}(t+1))
$$

- nonneutrality arises from Phillips curve
- evidence: Christiano, Eichenbaum, Evans [1999]; Ramey [2016]

HYBRID SHORT-RUN PHILLIPS CURVE

- Phillips curve is forward-looking + backward-looking

$$
(1-\delta \gamma) \sum_{s=0}^{+\infty} \gamma^{s+1} \widehat{\pi}(t-s)-\lambda_{1} \widehat{n}(t)=\delta \gamma \mathbb{E}_{t}(\widehat{\pi}(t+1))-\lambda_{2} \mathbb{E}_{t}(\widehat{n}(t+1))
$$

- hybrid short-run Phillips curve is more realistic
- inflation dynamics are more persistent
- evidence: Mavroeidis, Plagborg-Moller, Stock [2014]

CALIBRATION FROM PASSTHROUGH EVIDENCE

LOOSENING OF MONETARY POLICY

EXPLANATION FOR ANGER AT INFLATION

- Shiller [1997] surveyed 120 people in the US
- 85% said that "when they go to the store and see that prices are higher, they sometimes feel a little angry at someone"
- someone: "greedy store owners and businesses"

EXPLANATION FOR OPINIONS ABOUT PRICE MOVEMENTS IN JAPAN (BOJ SURVEY, 2001-2017)

perceived price change	favorable	neutral	unfavorable
prices have gone up	2.5%	13.0%	83.7%
$(N=68,491)$			
prices have gone down $(N=18,257)$	43.0%	34.2%	21.9%

IMPROVEMENT IN TECHNOLOGY

LONG-RUN MONETARY NONNEUTRALITY

- steady-state perceived markup:

$$
\ln \left(\overline{M^{P}}\right)=\ln \left(\frac{\epsilon}{\epsilon-1}\right)+\frac{\gamma}{1-\gamma} \cdot \bar{\pi}
$$

- higher inflation \rightsquigarrow higher perceived markup \rightsquigarrow lower fairness
\rightsquigarrow lower actual markup \rightsquigarrow higher output
- evidence of long-run nonneutrality: King, Watson [1994, 1997]
- evidence on inflation \& markups: Benabou [1992]; Banerjee, Russell [2005]
- nonneutrality modulated by acclimation to inflation: $\chi \in[0,1]$

LONG-RUN PHILLIPS CURVE

LONG-RUN PHILLIPS CURVE

