AGGREGATE DEMAND, IDLE TIME, AND

UNEMPLOYMENT

Pascal Michaillat, Emmanuel Saez

Quarterly Journal of Economics, 2015

Paper available at https://pascalmichaillat.org/3/

UNEMPLOYMENT FLUCTUATIONS REMAIN INSUFFICIENTLY UNDERSTOOD

UNEMPLOYMENT FLUCTUATIONS REMAIN INSUFFICIENTLY UNDERSTOOD

UNEMPLOYMENT FLUCTUATIONS REMAIN INSUFFICIENTLY UNDERSTOOD

MODERN MODELS

- matching model of the labor market
- tractable
- but no aggregate demand
- New Keynesian model with matching frictions on the labor market
- many shocks, including aggregate demand
- but complex

GENERAL-DISEQUILIBRIUM MODEL

- vast literature after Barro \& Grossman [1971]
- revival after the Great Recession
- captures effect of aggregate demand on unemployment
- but supply-side factors are irrelevant in demand-determined regimes
- and difficult to analyze because of multiple regimes

THIS PAPER'S MODEL

- Barro-Grossman architecture
- matching structure on product market \& labor market
- instead of disequilibrium structure
- markets can be too slack or too tight but remain in equilibrium
- aggregate demand affects unemployment
- as do labor productivity, mismatch, job search, and labor-force participation
- simple: graphical representation of equilibrium

BASIC MODEL: PRODUCT MARKET

STRUCTURE

- static model
- measure 1 of identical households
- households produce and consume services
- no firms: services produced within households
- households cannot consume their own services
- services are traded on matching market
- households visit other households to buy services

MATCHING FUNCTION \& TIGHTNESS

MATCHING FUNCTION \& TIGHTNESS

k services

MATCHING FUNCTION \& TIGHTNESS

tightness: $x=v / k$
k services
sales $=k \cdot h(1, x)=k \cdot f(\underset{+}{x})$ output: $y=h(k, v)$
purchases $=v \cdot h\left(\frac{1}{x}, 1\right)=v \cdot q(\underset{-}{x})$
v visits

LOW PRODUCT MARKET TIGHTNESS

HIGH PRODUCT MARKET TIGHTNESS

EVIDENCE OF UNSOLD CAPACITY

MATCHING COST: $\rho \in(0,1)$ SERVICE PER VISIT

- consumption \equiv output net of matching services
- consumption, not output, yields utility
- key relationship: output $=[1+\tau(x)]$. consumption
- matching wedge $\tau(x)$ summarizes matching costs:

$$
\begin{aligned}
& \underbrace{y}_{\text {output }}=\underbrace{c}_{\text {consumption }}+\underbrace{\rho \cdot v}_{\text {matching services }}=c+\rho \cdot \frac{y}{q(x)} \\
& \Rightarrow y=\left[1+\frac{\rho}{q(x)-\rho}\right] \cdot c \equiv\left[\begin{array}{l}
1+\tau(\underset{+}{x}) \\
\underset{\sim}{x}
\end{array}\right] \cdot c
\end{aligned}
$$

EVIDENCE OF MATCHING COSTS

CONSUMPTION < OUTPUT < CAPACITY

- output $y<$ capacity k because the matching function prevents all services from being sold
- selling probability $f(x)<1$
- consumption c<output y because some services are devoted to matching so cannot provide utility
- matching wedge $\tau(x)>0$
- consumption is directly relevant for welfare

AGGREGATE SUPPLY

- aggregate supply \equiv number of services consumed at tightness x, given the supply of services k and matching process

$$
c^{s}(x)=\frac{f(x)}{1+\tau(x)} \cdot k=[f(x)-\rho \cdot x] \cdot k
$$

- could represent aggregate supply in terms of output instead of consumption, but consumption is linked to welfare

TIGHTNESS \& AGGREGATE SUPPLY

MONEY

- money is in fixed supply μ
- households hold m units of money
- the price of services in terms of money is p
- real money balances enter the utility function
- Barro \& Grossman [1971]
- Blanchard \& Kiyotaki [1987]

HOUSEHOLDS

- take price p and tightness x as given
- choose c, m to maximize utility

$$
\underbrace{\frac{\chi}{1+\chi} \cdot c^{\frac{\epsilon-1}{\epsilon}}}_{\text {services }}+\underbrace{\frac{1}{1+\chi} \cdot\left(\frac{m}{p}\right)^{\frac{\epsilon-1}{\epsilon}}}_{\text {real money balances }}
$$

- subject to budget constraint

AGGREGATE DEMAND

- optimal consumption decision:

$$
\underbrace{(1+\tau(x))}_{\text {relative price }} \cdot \underbrace{\frac{1}{1+\chi} \cdot\left(\frac{m}{p}\right)^{-\frac{1}{\epsilon}}}_{M U \text { of real money }}=\underbrace{\frac{\chi}{1+\chi} \cdot c^{-\frac{1}{\epsilon}}}_{M U \text { of services }}
$$

- money market clears: $m=\mu$
- aggregate demand gives desired consumption of services given price p and tightness x :

$$
c^{d}(x, p)=\left(\frac{x}{1+\tau(x)}\right)^{\epsilon} \cdot \frac{\mu}{p}
$$

LINKING AGGREGATE DEMAND \& VISITS

- there is a direct link between consumption of services, purchase of services, and visits
- if the desired consumption is $c^{d}(x, p)$
- the desired number of purchases is

$$
(1+\tau(x)) \cdot c^{d}(x, p)
$$

- and the required number of visits is

$$
v=\frac{(1+\tau(x)) \cdot c^{d}(x, p)}{q(x)}
$$

TIGHTNESS \& AGGREGATE DEMAND

EQUILIBRIUM

- price $p+$ tightness x equilibrate supply and demand:

$$
c^{s}(x)=c^{d}(x, p)
$$

- the matching equilibrium is richer than the Walrasian equilibrium-where only price equilibrates supply and demand
- can describe "Walrasian situations" where price responds to shocks and tightness is constant
- but can also describe "Keynesian situations" where price is constant and tightness responds to shocks

PRICE MECHANISM

- we need a price mechanism to completely describe the equilibrium
- here we consider two polar cases:
- fixed price [Barro \& Grossman 1971]
- competitive price [Moen 1997]
- in the paper we also consider:
- bargaining (typical in the matching literature)
- partially rigid price [Blanchard \& Gali 2010]

COMPARATIVE STATICS

INCREASE IN AD WITH FIXED PRICE ($\chi \uparrow$)

INCREASE IN AD WITH FIXED PRICE ($\chi \uparrow)$

INCREASE IN AS WITH FIXED PRICE ($k \uparrow$)

COMPARATIVE STATICS WITH FIXED PRICE

	output	tightness
increase in:	y	x
aggregate demand χ	+	+
aggregate supply k	+	-

EFFICIENT EQUILIBRIUM: MAXIMUM CONSUMPTION

SLACK EQUILIBRIUM: CONSUMPTION IS TOO LOW

TIGHT EQUILIBRIUM: CONSUMPTION IS TOO LOW

COMPARATIVE STATICS WITH COMPETITIVE PRICE

output
y
0
$+$

COMPLETE MODEL: PRODUCT MARKET \&

 LABOR MARKET
LABOR MARKET \& UNEMPLOYMENT

FIRMS

- workers are hired on matching labor market
- production is sold on matching product market
- firms employ producers and recruiters
- number of recruiters $=\hat{\tau}(\theta) \times$ producers
- number of employees $=[1+\hat{\tau}(\theta)] \times$ producers
- take real wage w and tightnesses x and θ as given
- choose number of producers n to maximize profits

LABOR DEMAND

- optimal employment decision:

- same as Walrasian first-order condition, except for selling probability < 1 and matching wedge > 0
- labor demand gives the desired number of producers:

$$
n^{d}(\theta, x, w)=\left[\frac{f(x) \cdot a \cdot \alpha}{(1+\hat{\tau}(\theta)) \cdot w}\right]^{\frac{1}{1-\alpha}}
$$

PARTIAL EQUILIBRIUM ON LABOR MARKET

GENERAL EQUILIBRIUM

- prices (p, w) and tightnesses (x, θ) equilibrate supply and demand on product and labor markets:

$$
\left\{\begin{aligned}
c^{s}(x, \theta) & =c^{d}(x, p) \\
n^{s}(\theta) & =n^{d}(\theta, x, w)
\end{aligned}\right.
$$

- need to specify price and wage mechanisms
- fixed price and fixed wage
- competitive price and competitive wage

EFFECT OF AD WITH FIXED PRICES

EFFECT OF AD WITH FIXED PRICES

EFFECT OF AD WITH FIXED PRICES

KEYNESIAN, CLASSICAL, \& FRICTIONAL

UNEMPLOYMENT

- equilibrium unemployment rate:

$$
u=1-\frac{1}{h} \cdot\left(\frac{f(x) \cdot a \cdot \alpha}{w}\right)^{\frac{1}{1-\alpha}} \cdot\left(\frac{1}{1+\hat{\tau}(\theta)}\right)^{\frac{\alpha}{1-\alpha}}
$$

- if $f(x)=1, w=a \alpha h^{\alpha-1}$, and $\hat{\tau}(\theta)=0$, then $u=0$
- the factors of unemployment therefore are
- Keynesian factor: $f(x)<1$
- classical factor: $w>a \cdot \alpha \cdot h^{\alpha-1}$
- frictional factor: $\hat{\tau}(\theta)>0$

COMPARATIVE STATICS WITH FIXED PRICES

	product			
	output	tightness	employment	tightness
	y	x	l	θ
increase in:	+	+	+	+
aggregate demand x	+	-	+	+
technology a	+	-	+	-
labor supply h	+	-		

COMPARATIVE STATICS WITH FIXED PRICES

	product				
	output	tightness	employment	tightness	
	y	x	l	θ	
increase in:	+	+	+	+	
aggregate demand x	+	-	+	+	
technology a	+	-	+	-	
labor supply k					

COMPARATIVE STATICS WITH COMPETITIVE PRICES

	product			
	output	tightness	employment	tightness
	y	x	1	θ
increase in:	0	0	0	0
aggregate demand x	+	0	0	0
technology a	+	0	+	0
labor supply k				

RIGID OR FLEXIBLE PRICES?

x CONSTRUCTED FROM CAPACITY UTILIZATION IN SPC

FLUCTUATIONS IN $x \Rightarrow$ RIGID PRICE

FLUCTUATIONS IN $\theta \Rightarrow$ RIGID REAL WAGE

LABOR DEMAND

OR LABOR SUPPLY SHOCKS?

LABOR DEMAND \& LABOR SUPPLY SHOCKS

- source of labor demand shocks:
- aggregate demand χ
- technology a
- source of labor supply shocks:
- labor-force participation h
- h can also be interpreted as job-search effort

PREDICTED EFFECTS OF SHOCKS

- labor supply shocks:
- negative correlation between employment (l) and labor market tightness (θ)
- labor demand shocks:
- positive correlation between employment (l) and labor market tightness (θ)

$\operatorname{corr}(l, \theta)>0 \Rightarrow$ LABOR DEMAND

CROSS-CORRELOGRAM: θ (LEADING) \& l

AGGREGATE DEMAND

OR TECHNOLOGY SHOCKS?

PREDICTED EFFECTS OF SHOCKS

- aggregate demand shocks:
- positive correlation between output (y) and product market tightness (x)
- technology shocks:
- negative correlation between output (y) and product market tightness (x)
$\operatorname{corr}(y, x)>0 \Rightarrow A D$

CROSS-CORRELOGRAM: x (LEADING) \& y

CONCLUSION

SUMMARY

- we develop a tractable, general-equilibrium model of unemployment fluctuations
- we construct empirical series for
- product market tightness
- labor market tightness
- we find that unemployment fluctuations stem from
- price rigidity and real-wage rigidity
- aggregate demand shocks

APPLICATIONS OF THE MODEL TO POLICY

- optimal unemployment insurance
- Landais, Michaillat, \& Saez [2018]
- optimal public expenditure
- Michaillat \& Saez [2019]
- optimal monetary policy
- Michaillat \& Saez [2021]

