DO MATCHING FRICTIONS EXPLAIN UNEMPLOYMENT? NOT IN BAD TIMES

Pascal Michaillat

American Economic Review, 2012

Paper available at https://pascalmichaillat.org/1/

WORKERS QUEUE FOR JOBS IN BAD TIMES

WORKERS QUEUE FOR JOBS IN BAD TIMES

WORKERS QUEUE FOR JOBS IN BAD TIMES

EXISTING MATCHING MODELS: NO QUEUES

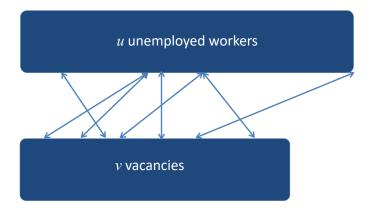
- a queue is a situation where workers desperately want a job but cannot find one
- in existing models, unemployment vanishes when workers desperately want a job ~>> queues cannot exist
 - formally: unemployment vanishes when workers' job-search effort becomes infinite
- problem with existing models: firms hire everybody when recruiting is costless

THIS PAPER: MATCHING MODEL WITH QUEUES

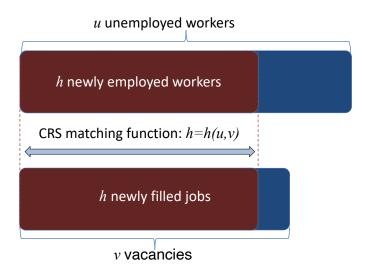
- firms may not hire everybody when recruiting is costless
- based on two assumptions:
 - diminishing marginal returns to labor
 - wage rigidity
- in bad times, jobs are rationed:
 - unemployment would not disappear if recruiting costs vanished
 - queues could appear

GENERIC MATCHING MODEL

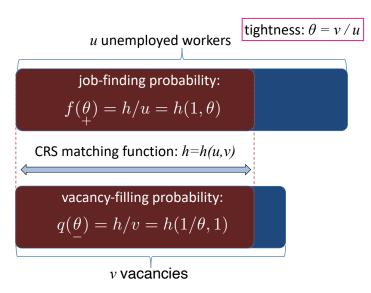
MATCHING FUNCTION



MATCHING FUNCTION



MATCHING FUNCTION

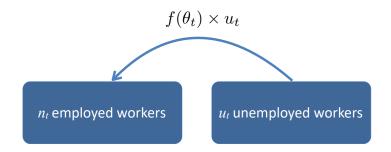


WORKER FLOWS: JOB CREATION & DESTRUCTION

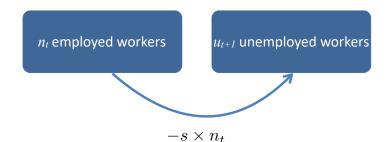
1 - u_t employed workers

u^{*t*} unemployed workers

WORKER FLOWS: JOB CREATION & DESTRUCTION



WORKER FLOWS: JOB CREATION & DESTRUCTION



BEVERIDGE CURVE

 the Beveridge curve relates employment *n* to tightness θ when labor market flows are balanced

 $- \ E \rightarrow U = U \rightarrow E$

$$- s \cdot n = f(\theta) \cdot u = f(\theta) \cdot [1 - n + s \cdot n]$$

• equation of the Beveridge curve:

$$n = \frac{f(\theta)}{s + (1 - s) \cdot f(\theta)}$$

GENERIC WAGE SCHEDULE

- there are mutual gains from matching
- many wage schedules are consistent with equilibrium
- generic wage schedule: $w_t = w(n_t, \theta_t, x_t)$
 - n_t : level of employment in the firm
 - θ_t : aggregate level of tightness
 - x_t : state of the economy
- w nests various types of bargaining and wage rigidity

REPRESENTATIVE FIRM

- employs n_t workers paid w_t
- produces $y_t = g(n_t, a_t)$
 - g: production function
 - *a_t*: productivity (random variable)
- hires $n_t (1 s) \cdot n_{t-1}$ new workers
 - cost per vacancy: $c \cdot a_t$
 - probability to fill a vacancy: $q(\theta_t)$

FIRM PROBLEM

 given productivity {a_t}, tightness {θ_t}, and the wage schedule w, the firm chooses employment {n_t} to maximize expected profits

$$\mathbb{E}_{0} \sum_{t=0}^{+\infty} \delta^{t} \left[\underbrace{\underline{g(n_{t}, a_{t})}_{\text{production}} - \underbrace{w(n_{t}, \theta_{t}, x_{t}) \cdot n_{t}}_{\text{wage bill}} - \underbrace{\frac{c \cdot a_{t}}{q(\theta_{t})} \cdot (n_{t} - (1 - s) \cdot n_{t-1})}_{\text{recruiting expenses}} \right]$$

$$\frac{\partial g(n,a)}{\partial n} - w - n \cdot \frac{\partial w(n,\theta,x)}{\partial n} - \left[1 - \delta \cdot (1-s)\right] \cdot \frac{c \cdot a}{q(\theta)} = 0$$

- the condition says that marginal profit = 0
- the marginal profit is the sum of
 - gross marginal profit: independent of c
 - marginal recruiting expenses: dependent on c
- (this is the steady-state expression of the condition)

ABSENCE OR PRESENCE OF JOB RATIONING IN SEVERAL MODELS

DEFINITION OF JOB RATIONING

- jobs are rationed if the employment rate remains strictly below 1 when recruiting is costless
- equivalently, jobs are rationed if the employment rate remains strictly below 1 when the recruiting $\cot c o 0$
- when jobs are rationed, queues could exist
 - employment is the same when job-search effort $ightarrow\infty$ and when c
 ightarrow 0

FOUR MATCHING MODELS

model	production function	wage setting
Pissarides [2000]	constant returns to labor	Nash bargaining
Cahuc & Wasmer [2001]	diminishing marginal returns to labor	Stole-Zwiebel bargaining
Hall [2005]	constant returns to labor	rigid wage
this paper	diminishing marginal returns to labor	rigid wage

THE MODEL OF PISSARIDES [2000]

- linear production function: $g(n, a) = a \cdot n$
- wage from Nash bargaining:

$$w = a \cdot c \cdot \frac{\beta}{1 - \beta} \left[\frac{1 - \delta \cdot (1 - s)}{q(\theta)} + \delta \cdot (1 - s) \cdot \theta \right]$$

- $\beta \in (0, 1)$: workers' bargaining power
- (this is the steady-state expression of the wage)

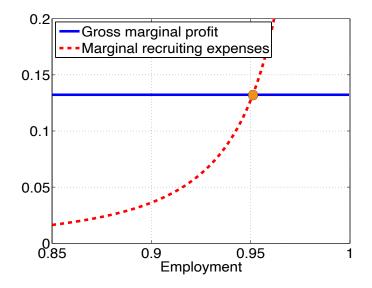
PISSARIDES [2000]: EQUILIBRIUM

- steady-state equilibrium: pair (n, θ) that satisfies
 - Beveridge curve
 - firm's profit-maximization condition
- equilibrium condition:

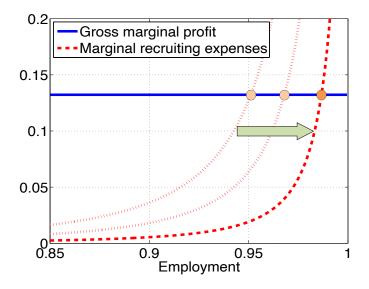
$$\underbrace{1-\beta}_{\text{gross marginal profit}} = \underbrace{c \cdot \left[\frac{1-\delta \cdot (1-s)}{q(\theta(n))} + \delta \cdot (1-s) \cdot \beta \cdot \theta(n)\right]}_{\text{marginal recruiting expenses}}$$

- where $\theta(n)$ is implicitly defined by Beveridge curve

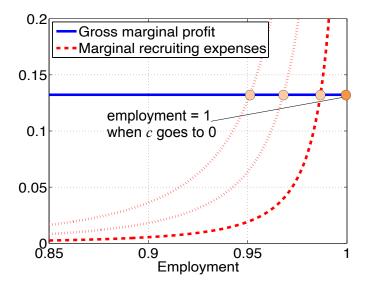
PISSARIDES [2000]: EQUILIBRIUM



PISSARIDES [2000]: EQUILIBRIUM AS c ightarrow 0



PISSARIDES [2000]: NO JOB RATIONING



THE MODEL OF CAHUC & WASMER [2001]

- concave production function: $g(n, a) = a \cdot n^{\alpha}$
 - $\alpha < 1$: diminishing marginal returns to labor
- wage from Stole-Zwiebel bargaining:

$$w = a \cdot \left[\frac{\beta \cdot \alpha}{1 - \beta \cdot (1 - \alpha)} \cdot n^{\alpha - 1} + c \cdot (1 - s) \cdot \delta \cdot \beta \cdot \theta \right]$$

- $\beta \in (0, 1)$: workers' bargaining power
- (this is the steady-state expression of the wage)

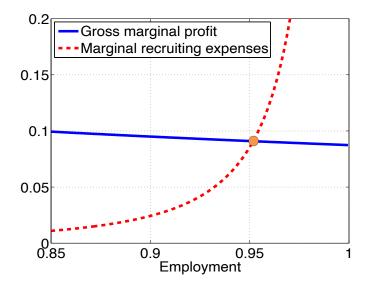
CAHUC & WASMER [2001]: EQUILIBRIUM

- steady-state equilibrium: pair (n, θ) that satisfies
 - Beveridge curve
 - firm's profit-maximization condition
- equilibrium condition:

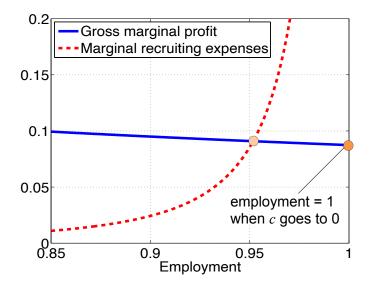
$$\underbrace{\frac{\alpha \cdot (1-\beta)}{1-\beta \cdot (1-\alpha)} \cdot n^{\alpha-1}}_{\text{gross marginal profit}} = \underbrace{c \cdot \left[\frac{1-\delta(1-s)}{q(\theta(n))} + \delta(1-s) \cdot \beta \cdot \theta(n)\right]}_{\text{marginal recruiting expenses}}$$

- where $\theta(n)$ is implicitly defined by Beveridge curve

CAHUC & WASMER [2001]: EQUILIBRIUM



CAHUC & WASMER [2001]: NO JOB RATIONING



THE MODEL OF HALL [2005]

- linear production function: $g(n, a) = a \cdot n$
- rigid wage: $w = \omega \cdot a^{\gamma}$
 - $-\omega$ > 0: level of the real wage
 - $-\gamma < 1$: partially rigid real wage
 - if γ = 0: fixed wage
 - specification from Blanchard & Gali [2010]

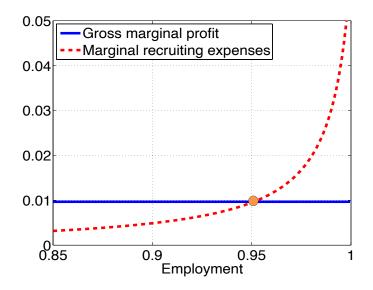
HALL [2005]: EQUILIBRIUM

- steady-state equilibrium: pair (n, θ) that satisfies
 - Beveridge curve
 - firm's profit-maximization condition
- equilibrium condition:

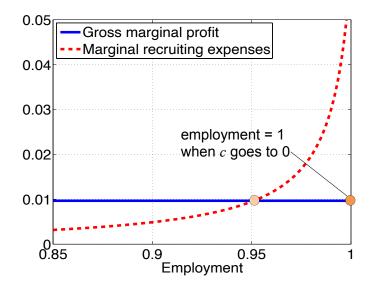
$$\underbrace{1 - \omega \cdot a^{\gamma - 1}}_{\text{gross marginal profit}} = \underbrace{c \cdot \frac{1 - \delta \cdot (1 - s)}{q(\theta(n))}}_{\text{marginal recruiting expenses}}$$

- where $\theta(n)$ is implicitly defined by Beveridge curve

HALL [2005]: EQUILIBRIUM



HALL [2005]: NO JOB RATIONING



THIS PAPER'S MODEL

- concave production function: $g(n, a) = a \cdot n^{\alpha}$
 - α < 1: diminishing marginal returns to labor

• rigid wage:
$$w = \omega \cdot a^{\gamma}$$

- $-\omega$ > 0: level of the real wage
- $-\gamma < 1$: partially rigid real wage
- if γ = 0: fixed wage
- specification from Blanchard & Gali [2010]

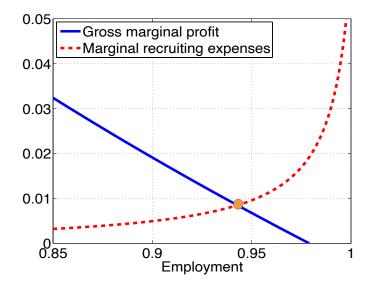
THIS PAPER'S MODEL: EQUILIBRIUM

- steady-state equilibrium: pair (n, θ) that satisfies
 - Beveridge curve
 - firm's profit-maximization condition
- equilibrium condition:

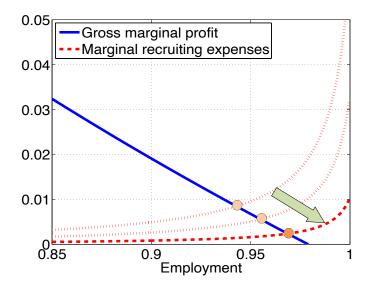
$$\underbrace{\alpha \cdot n^{\alpha - 1} - \omega \cdot a^{\gamma - 1}}_{\text{gross marginal profit}} = \underbrace{c \cdot \frac{1 - \delta \cdot (1 - s)}{q(\theta(n))}}_{\text{marginal recruiting expenses}}$$

- where $\theta(n)$ is implicitly defined by Beveridge curve

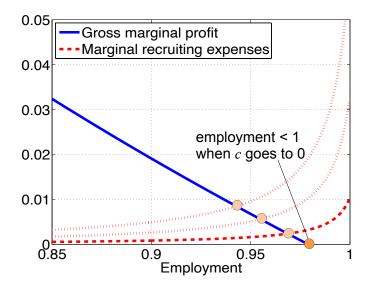
THIS PAPER'S MODEL: EQUILIBRIUM



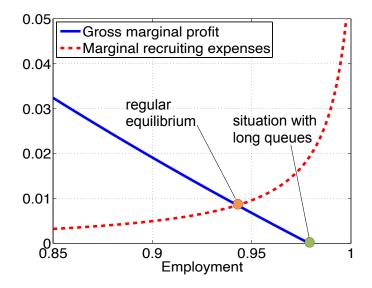
This paper's model: equilibrium as c ightarrow 0



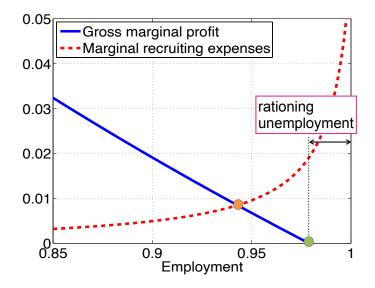
THIS PAPER'S MODEL: JOB RATIONING



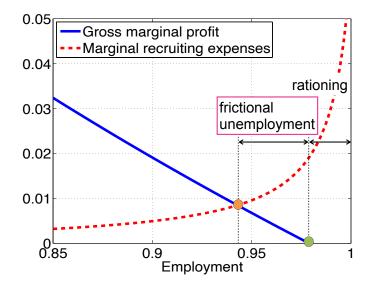
THIS PAPER'S MODEL: JOB RATIONING



FRICTIONAL & RATIONING UNEMPLOYMENT



FRICTIONAL & RATIONING UNEMPLOYMENT

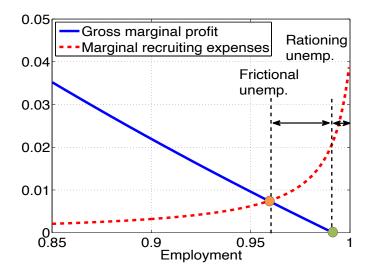


SUMMARY

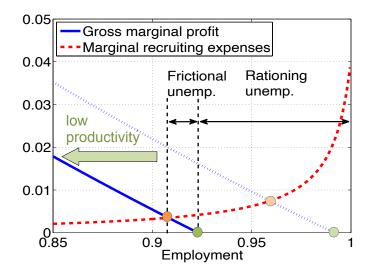
nodel assumptions		job rationing?
Pissarides [2000]	bargaining linear production	no
Cahuc & Wasmer [2001]	bargaining concave production	no
Hall [2005]	rigid wage linear production	no
this paper	rigid wage concave production	yes

FRICTIONAL UNEMPLOYMENT OVER THE BUSINESS CYCLE: COMPARATIVE STATICS

FRICTIONAL UNEMPLOYMENT IS HIGH IN BOOMS



FRICTIONAL UNEMPLOYMENT IS LOW IN SLUMPS



SUMMARY

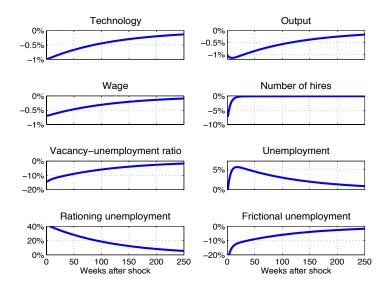
- with low productivity, gross marginal profits are low
 - because of wage rigidity
- → labor demand is depressed
- votal unemployment & rationing unemployment are high
 - but it is easy for firms to recruit workers
- → frictional unemployment is low

FRICTIONAL UNEMPLOYMENT OVER THE BUSINESS CYCLE: SIMULATIONS

CALIBRATION (WEEKLY FREQUENCY)

	interpretation	value	source
η	elasticity of matching	0.5	Petrongolo & Pissarides [2001]
γ	real wage flexibility	0.7	Haefke et al [2008]
С	recruiting cost	0.22	Barron et al [1997]
			Silva & Toledo [2009]
S	separation rate	0.95%	JOLTS, 2000–2009
μ	effectiveness of matching	0.23	JOLTS, 2000–2009
α	marginal returns to labor	0.67	matches labor share = 0.66
ω	steady-state real wage	0.67	matches unemployment = 5.8%
ρ	autocorrelation of productivity	0.992	MSPC, 1964–2009
ω	standard deviation of shocks	0.0027	MSPC, 1964-2009

IMPULSE RESPONSES TO NEGATIVE SHOCK

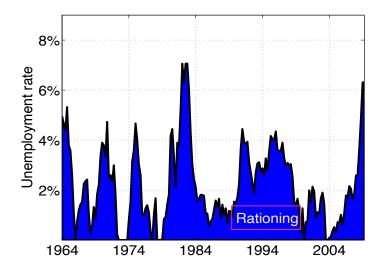


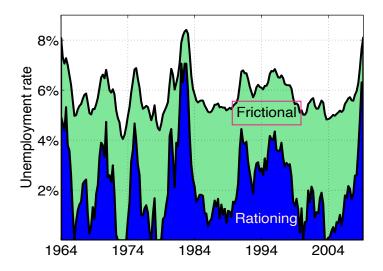
SIMULATED & EMPIRICAL MOMENTS

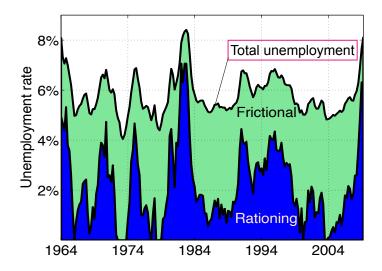
moment	model	US data
elasticity of <i>u</i> wrt <i>a</i>	5.9	4.2
elasticity of <i>v</i> wrt <i>a</i>	6.8	4.3
elasticity of <i>w</i> wrt <i>a</i>	0.7	0.7
autocorrelation(u)	0.90	0.91
autocorrelation(v)	0.76	0.93
correlation(<i>u</i> , <i>v</i>)	-0.89	-0.89

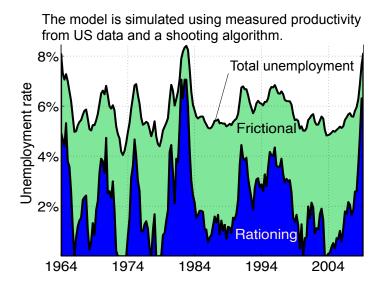
SIMULATED & EMPIRICAL MOMENTS

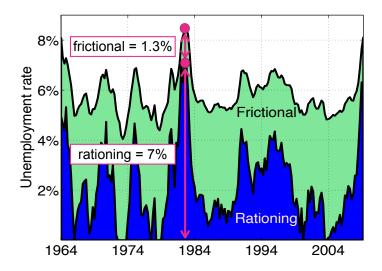
- the volatility of unemployment and vacancies is as large in the model as in US data
 - \rightsquigarrow no Shimer [2005] puzzle
 - although wages are as flexible as in newly created US jobs
- the correlation between unemployment and vacancies is the same in the model as in the data
 - ~> realistic Beveridge curve

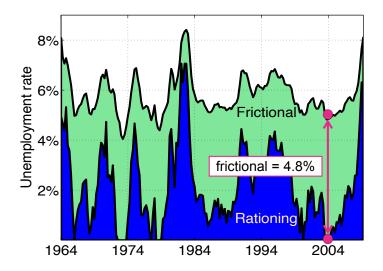


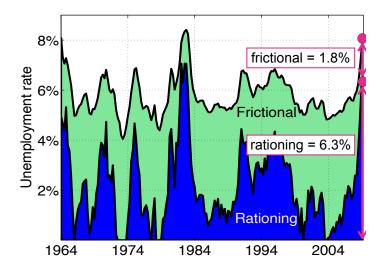




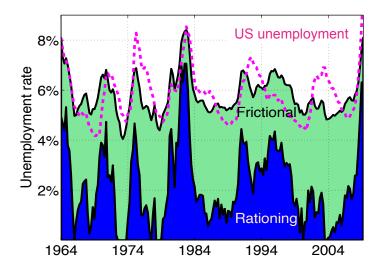








UNEMPLOYMENT IN MODEL & DATA



CONCLUSION

SUMMARY

- this paper develops a matching model with job rationing
 - unemployment does not disappear when recruiting costs vanish
- in booms: most of unemployment is frictional
 - there are enough jobs
 - but the matching process and recruiting costs create unemployment

SUMMARY

- in slumps: frictional unemployment is lower and unemployment mostly comes from job rationing
 - there are not enough jobs
 - the matching process and recruiting costs create little additional unemployment
- simulations:
 - as unemployment ↑ from 4.8% to 8.3%
 - rationing unemployment ↑ from 0% to 7%
 - frictional unemployment \downarrow from 4.8% to 1.3%

IMPLICATIONS FOR MODELING UNEMPLOYMENT

- the result that frictional unemployment is low in slumps does not mean that the matching framework is inappropriate to describe slumps
- but it means that in slumps, the matching process and recruiting costs create little unemployment
- instead, most unemployment arises from a shortage of jobs—a weak labor demand

IMPLICATIONS FOR POLICY

- in slumps: unemployment comes from job rationing
- → to reduce unemployment in slumps, it is necessary to stimulate labor demand
- → policies reducing frictional unemployment have limited scope in slumps
 - example #1: creating a placement agency to improve matching
 - example #2: reducing unemployment insurance to stimulate job search

APPLICATION #1: UNEMPLOYMENT INSURANCE

- the model can be combined with a Baily-Chetty model of optimal unemployment insurance (UI)
- this model explains the rat-race effect: higher UI alleviates the rat race for jobs and raises tightness
- policy implication: optimal UI is more generous in slumps than in booms
- see Landais, Michaillat, & Saez [2018]

APPLICATION #2: COUNTERCYCLICAL MULTIPLIERS

- the labor market model can be embedded into a New Keynesian model
- this model explains the countercyclicality of the government multiplier
- the result relies not on the zero lower bound but on the nonlinearity of the labor market
- see Michaillat [2014]

APPLICATION #3: UNEMPLOYMENT FLUCTUATIONS

- the labor market model can be combined to a product market model with a similar structure
- this general-equilibrium model describes how unemployment fluctuations may arise from
 - aggregate demand shocks
 - technology shocks
 - labor supply shocks
- in the US: most unemployment fluctuations come from aggregate demand shocks
- see Michaillat & Saez [2015]