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APPENDIX B.

Elasticities

In this appendix, we review the concept of elasticity, which we use repeatedly throughout
the book. Throughout we consider a function f (x) that is positive and differentiable for
x > 0.

B.1. Definition of elasticities

The elasticity of f (x) with respect to x, denoted ϵ
f
x , is defined as

(B.1) ϵ
f
x =

x
f (x)

⋅ f ′(x),

where f ′(x) is the standard derivative of f . All properties of elasticities flow from this
single definition.

B.2. Leibniz notation for differentials

Toworkwith elasticities, it is convenient to introduce Leibniz’s notation for differentials. In
this notation, dx denotes a small, infinitesimal change in a variable x, and d f (x) denotes
a small, infinitesimal change in a function f (x). The differential d f (x) can be computed
from the differential dx and the derivative f ′(x) of the function f :

(B.2) d f (x) = f ′(x)dx.
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The Leibniz notation is particularly convenient to use with the logarithm. Given that
the derivative of ln(x) is 1/x:

(B.3) d ln(x) =
dx
x
.

Hence, while dx measures the absolute change in x, d ln(x)measures a relative change in
x.

Applying the logarithm to the function f , we obtain

(B.4) d ln f (x) =
d f (x)
f (x)

.

Sowhile d f (x)measures the absolute change in f (x), d ln f (x)measures a relative change
in f (x).

These equations show that the log-differentials d ln(x) and d ln f (x) are simply a
compact way of writing the relative change in the variable x or the function f (x).

From definition (B.2), we see that it is easy to use the differential operator d because
the standard laws of derivatives apply to it.

B.3. Interpretation of elasticities

What does an elasticity mean? To answer this, we rewrite the definition (B.1) using the
Leibniz notation f ′(x) = d f /dx:

ϵ
f
x =

x
f (x)

⋅

d f (x)
dx

=

d f (x)/ f (x)
dx/x

.

We see from this equation that the elasticity is the ratio of the relative change in f to the
relative change in x. This gives a simple interpretation. Let’s consider a 1% change in x,
which means its relative change is dx/x = 0.01. The resulting relative change in f (x) is:

d f (x)
f (x)

= ϵ
f
x ×

dx
x
= ϵ

f
x × 0.01.

Thus, a 1% change in x leads to an ϵ
f
x percentage change in f (x): the elasticity measures

the percentage response of a function to a 1% change in its input.

B.4. Connection between elasticities and log-differentials

The reason elasticities are so convenient is their connection to natural logarithms. This
connection comes from a basic result in calculus: the derivative of ln(x) is 1/x. In Leibniz’s
notation, this means d ln(x) = dx/x, as we saw in equation (B.3). Using this insight and
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expression (B.3), we can express the elasticity as the ratio of two log-differentials. This is
not a new definition, but a convenient reformulation of (B.1):

(B.5) ϵ
f
x =

d ln f (x)
d ln(x)

.

This logarithmic form often helps compute the elasticity of complex functions.
Reshuffling (B.5), we also see that the elasticity relates the log-differential of the func-

tion to the log-differential of the argument:

d ln f (x) = ϵ fx d ln(x).

B.5. Useful results on elasticities

Finally, we introduce several results that we use throughout the book to compute elastici-
ties. Throughout, the functions g(x) and h(x) are assumed to be positive and differentiable
for x > 0, and the parameter a is assumed to be positive.

RESULT 1. The elasticity of the function f (x) = xa is ϵ fx = a.

PROOF. Since ln( f (x)) = a ln(x), differentiating gives d ln( f (x)) = a d ln(x). Dividing by
d ln(x), we get d ln( f (x))/d ln(x) = a. We then obtain the result by applying (B.5).

RESULT 2. The elasticity of the function f (x) = ag(x) is ϵ fx = ϵ
g
x.

PROOF. Since ln( f (x)) = ln(a) + ln(g(x)), and ln(a) is just a constant, then differentiat-
ing gives d ln( f (x)) = d ln(g(x)), so d ln( f (x))/d ln(x) = d ln(g(x))/d ln(x). Once again,
we obtain the result by applying (B.5).

RESULT 3. The elasticity of the function f (x) = g(x) ⋅ h(x) is ϵ fx = ϵ
g
x + ϵ

h
x.

PROOF. Since ln( f (x)) = ln(g(x)) + ln(h(x)), then d ln( f (x)) = d ln(g(x)) + d ln(h(x)).
We obtain the result after dividing by d ln(x) and using (B.5).

RESULT 4. The elasticity of the function f (x) = g(x)/h(x) is ϵ fx = ϵ
g
x − ϵ

h
x.

PROOF. Since ln( f (x)) = ln(g(x)) − ln(h(x)), then d ln( f (x)) = d ln(g(x)) − d ln(h(x)).
Again, we obtain the result after dividing by d ln(x) and using (B.5).

RESULT 5. The elasticity of the function f (x) = g(x) + h(x) is

ϵ
f
x =

g(x)
g(x) + h(x)

⋅ ϵ
g
x +

h(x)
g(x) + h(x)

⋅ ϵhx.

5



PROOF. For sums of functions, the log definition (B.5) is not helpful, so we return to the
original definition (B.1). Since f ′(x) = g′(x) + h′(x), we get

ϵ
f
x =

x
f (x)

⋅ f ′(x)

=

x
g(x) + h(x)

[g′(x) + h′(x)]

=

g(x)
g(x) + h(x)

[

x
g(x)

⋅ g′(x)] +
h(x)

g(x) + h(x)
[

x
h(x)

⋅ h′(x)] ,

which yields the result using the definition of elasticities, (B.1).

RESULT 6. The elasticity of the function f (x) = g(x) − h(x), with h(x) < g(x), is

ϵ
f
x =

g(x)
g(x) − h(x)

⋅ ϵ
g
x −

h(x)
g(x) − h(x)

⋅ ϵhx.

PROOF. Here again, we use the original definition of the elasticity, (B.1). Since f ′(x) =
g′(x) − h′(x), we get

ϵ
f
x =

x
f (x)

⋅ f ′(x)

=

x
g(x) − h(x)

[g′(x) − h′(x)]

=

g(x)
g(x) − h(x)

[

x
g(x)

⋅ g′(x)] −
h(x)

g(x) − h(x)
[

x
h(x)

⋅ h′(x)] ,

which yields the result using the definition of elasticities, (B.1).

RESULT 7. The elasticity of the function f (x) = g(h(x)) is

ϵ
f
x = ϵ

h
x ⋅ ϵ

g
h,

where ϵgh is the elasticity of g evaluated at h(x).

PROOF. We again use the original definition of the elasticity, given by (B.1). By the chain
rule f ′(x) = h′(x)g′(h(x)), so we get

ϵ
f
x =

x
f (x)

⋅ f ′(x)

= [

x
h(x)

⋅ h′(x)] [
h(x)

g(h(x))
⋅ g′(h(x))] ,

which yields the result using the definition of elasticities, (B.1).

Finally, we introduce a bivariate function k(y, z) which is positive and differentiable
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for (y, z) ∈ (0,∞)2. We also assume that the arguments y and z are themselves functions
of x, and the functions y(x) and z(x) are positive and differentiable for x > 0.

RESULT 8. The elasticity of the function f (x) = k(y(x), z(x)) is

ϵ
f
x = ϵ

k
y ⋅ ϵ

y
x + ϵ

k
z ⋅ ϵ

z
x,

where ϵky and ϵkz are partial elasticities of the function k:

ϵky =
y

k(y, z)
⋅

∂k
∂y

and ϵkz =
z

k(y, z)
⋅

∂k
∂z
.

PROOF. We once more use the original definition of the elasticity, given by (B.1). By the
multivariate chain rule,

f ′(x) =
∂k
∂y
⋅ y′(x) +

∂k
∂z
⋅ z′(x).

Hence, using the fact that f (x) = k(y(x), z(x)), we get

ϵ
f
x =

x
f (x)

⋅ f ′(x)

= [

y
k(y, z)

⋅

∂k
∂y
] [

x
y
⋅ y′(x)] + [

z
k(y, z)

⋅

∂k
∂z
] [

x
z
⋅ z′(x)] .

This equation yields the result using the definition of the standard and partial elasticities.

RESULT 9. Consider two variables y and x, related by y = f (x), where f is a bijection with
f ′(x) ≠ 0. Let g = f −1 be the inverse of f ; it is differentiable by the inverse function theorem,
and x = g(y). The elasticity of the function g with respect to y is

ϵ
g
y =

1

ϵ
f
x

,

where ϵ fx is the elasticity of f evaluated at x = g(y).

PROOF. Once again, we use the original definition of the elasticity, given by (B.1). By the
inverse function theorem g′(y) = 1/ f ′( f −1(y)), so we get

ϵ
g
y =

y

f −1(y)
⋅

1
f ′( f −1(y))

.

Using the definition ϵ
f
x = x f

′
(x)/ f (x) and substituting x = g(y) = f −1(y), we obtain the

result.
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B.6. Implicit differentiation with elasticities

Implicit differentiation is very helpful to compute derivatives of functions that are defined
implicitly. It turns out that we can also use the same technique to compute elasticities of
functions defined implicitly.

RESULT 10. Assume that the function y(x) > 0 is defined implicitly by the equation f (x, y) =
g(x, y), where the bivariate functions f (x, y) and g(x, y) are positive and differentiable for
(x, y) ∈ (0,∞)2. Then we can take elasticities on both sides of the equation so the elasticity of y
with respect to x satisfies

ϵ
f
x + ϵ

f
y ⋅ ϵ

y
x = ϵ

g
x + ϵ

g
y ⋅ ϵ

y
x ,

where ϵ fx , ϵ
f
y , ϵ

g
x, ϵ

g
y, are partial elasticities defined by

ϵ
f
x =

x
f (x, y)

⋅

∂ f
∂x

, ϵ
f
y =

y
f (x, y)

⋅

∂ f
∂y

, ϵ
g
x =

x
g(x, y)

⋅

∂g
∂x
, ϵ

g
y =

y
g(x, y)

⋅

∂g
∂y
.

Collecting terms, we can express the elasticity of y as a function of the elasticities of the functions
f and g:

ϵ
y
x =

ϵ
g
x − ϵ

f
x

ϵ
f
y − ϵ

g
y

.

PROOF. The implicit differentiation of the equation f (x, y) = g(x, y) gives

∂ f
∂x
+

∂ f
∂y
⋅ y′(x) =

∂g
∂x
+

∂g
∂y
⋅ y′(x).

We then divide the left-hand side by f (x, y) and the right-hand side by g(x, y), which we
can do because they have the same value, and we multiply both sides by x. We get

x
f (x, y)

⋅

∂ f
∂x
+ [

y
f (x, y)

⋅

∂ f
∂y
] [

x
y
⋅ y′(x)] =

x
f (x, y)

⋅

∂g
∂x
+ [

y
f (x, y)

⋅

∂g
∂y
] [

x
y
⋅ y′(x)] ,

which yields the result using the definition of the standard and partial elasticities.
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