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CHAPTER 4.

Matching function

In slackish markets, all trades are mediated by a matching function. These markets
therefore differ fromWalrasian markets, where all trades are mediated via an auction,
and have sharply different properties.

In this chapter we introduce the matching function, which is the key tool we use
to model slackish markets and study slack and unemployment. The matching function
summarizes the complex process through which buyers find sellers: for instance, how
workers searching for jobs meet firms searching for employees, and how firms searching
for customers meet consumers searching for goods and services.1 Pissarides (2000, pp. 3–
4) explains the role of the matching function wonderfully in the case of the labor market,
but this book’s argument is that his description in fact applies to the vast majority of
markets. Slightly generalizing his words:

Trade in [any]market is a nontrivial economic activity because of the existence
of heterogeneities . . .and information imperfections. If all [buyers and sellers]
were identical to each other, and if there was perfect information about their
[attributes], trade would be trivial. But without homogeneity on either side
of the market and with costly acquisition of information, [buyers and sellers]
find it necessary to spend resources to find [desirable] trades. . . .Thematching
function gives the outcome of the investment of resources by [buyers and
sellers] in the trading process as a function of inputs. It is a modeling device
that captures the implications of the costly trading process without the need

1See Petrongolo and Pissarides (2001, 425–427) for a detailed history of the matching function.
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to make . . . the features that give rise to it explicit.

After having introduced a generic matching function and discussed its properties, we will
cover several specific matching functions.

4.1. Why do we need amatching function?

At any point in time, in almost any market, we have buyers and sellers who want to trade,
but are not able to trade immediately. On the labor market, there are workers who want
to sell their labor and firms who want to buy labor and yet, even though these two groups
coexist, it takes time for workers to find a job and for firms to fill a vacant job. On the
housing market, families trying to sell their houses coexist with families looking for a
house to buy—but it takes time for families to sell their homes and for other families to
find a new home. On the car market, there are cars that sit in inventory and people who
are looking to buy cars. It takes time for people to find a car, and it also takes time for
the cars in inventory to be sold. On the service market, there may be babysitters who are
looking for work, and at the same time, there are families looking to hire—it still takes
time for them to find the right babysitter. There are restaurant tables that are empty and
hungry people looking for a good restaurant to eat at.

The bottom line is that in almost all markets, buyers who want to buy and sellers
who want to sell always coexist—it takes time for the transaction to occur. To model such
markets, we cannot use a Walrasian market. In the Walrasian market, one can always buy
and sell any quantity of a good at the market price, immediately and without constraints.
So a Walrasian market ignores the fact that it takes time and effort to buy and sell in most
real-world markets.

To model this complex trading process, we introduce a tool called the matching func-
tion. Thematching function is an aggregate function that captures and summarizes, at the
macro level, all the complexities of trading that happen at themicro level. It is very similar
to the production function, which summarizes at the aggregate level all the production
that happens at the micro level. It is a simple, well-behaved function that depends on only
a few aggregate variables.

Most trading is quite complicated—it is hard for buyers and sellers to get together to
execute a trade that both sides desire. For instance, on the labor market, a worker with
specific skills would look for a job with specific requirements, whether it be a specific
industry, specific location, or specific working conditions or responsibilities. Similarly, a
firm advertising a vacant job would have specific needs and would be looking for a worker
with the right skill set, the right experience, the right qualifications and character.

This complexity is not limited to the labor market. It would also occur when firms
trade with other firms. When firms look for suppliers for a specific part in a product that
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they are building, they have a long list of technical requirements because that part is
unique to their product. They also have additional constraints on the quality of the part
produced by the supplier, its reliability, the supplier’s location and how it operates. The
production capacity of the supplier and its existing commitments also matter, as they
determine whether the supplier can produce the part rapidly and in sufficient quantity.

And the complexity of trading is not confined to the labor market or to sophisticated
goods and services traded by firms. Even for seemingly simple goods and services pur-
chased in everyday life, trading is often complex because buyers have heterogeneous
needs and sellers offer differentiated products. Consider something as simple as a hair-
cut. Hairdressers specialize: for women, men, children; for budget or high-end styles.
Hairdressers have more or less experience, are more or less skilled, and are more or less
talkative. Hair salons have different numbers of chairs and existing customers so they are
more or less busy. And customers’ preferences differ. Hours of operation and locations
may or may not fit a customer’s schedule and daily routine. As a result, it takes time and
effort for customers to obtain a suitable haircut, and conversely, for hairdressers to attract
and retain customers.

This complexity exists in most markets, so the matching function can be applied to
almost all markets in which trading is complex. The only exceptions are markets in which
the goods that are traded are available in large quantity and entirely homogeneous. Then,
as all goods are the same, finding the right seller is not relevant. An example is the market
for common stocks, where all the shares are exactly the same. This is well-modeled by
a Walrasian model. The market for commodities such as gold or oil is similar too. But
very few markets operate that way; in practice, most goods or services sold are different
and most buyers have specific needs. Even financial markets, for the most part, operate
within an over-the-counter structure, which is better modeled using a matching function
than a Walrasian apparatus (Hugonnier, Lester, and Weill 2025).

Furthermore, the complexity of the trade process is quite visible by the effort that both
buyers and sellers put into trying to trade. If we look at the labor market, firms that are
trying to fill a vacant job have to spend a lot of time and effort recruiting. Similarly, workers
spend a lot of time and effort trying to find a job, for example by browsing LinkedIn and
sending out their applications. On the product market, a buyer spends time doing market
research before purchasing a good or service, either by reading customer reviews or going
on websites like Yelp or TripAdvisor. Similarly, sellers also spend time and money on
marketing and advertising to try and find consumers.

4.2. Theoretical properties of the matching function

The matching function is an aggregate function that summarizes all the micro-level
complexities of the trading process. The idea of summarizing the complex trading process
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by a generic function—without modeling the trading process explicitly—goes back to
Pissarides (1979, 1984, 1985, 1986). Before that, people usually modeled specific trading
processes that resulted in trading probabilities between 0 and 1—often from the urn-ball
model that is commonly used in probability. Even today, researchers usually assume
specific functional forms for their matching functions—often a Cobb-Douglas function.
But most matching functions share similar properties, reflecting natural properties of
markets. We review these properties here, before discussing their implications for traders
and market outcomes.

Consider a market for a specific good with s > 0 sellers and b > 0 buyers, open for one
period. Each seller places one good for sale, and each buyer aims to purchase one good.
The matching functionm(s,b) gives the number of trades in the period.

The shape of the matching function is often characterized by the matching elasticity,
which is the elasticity of the matching function with respect to the number of sellers:

η = s
m(s,b) ⋅

∂m(s,b)
∂s

.

The matching elasticity ηmay be constant or not, depending on the matching function.
A few restrictions are typically imposed on the matching function, to be realistic and

produce a well-behaved model.
First, obviously, the matching function is assumed to be positive.
Second, the matching function is assumed to be strictly increasing in each argument,

s and b. This means that if there are more sellers in the market, or more buyers in the
market, there are more trades. This is a natural assumption. If more goods are available,
chances are that a greater number of buyers find an appropriate good to buy. Conversely
if there are more buyers on the market, chances are that a greater number of sellers find
a buyer for their good.

A third assumption is that the matching function has constant returns to scale:

(4.1) m(zs, zb) = zm(s,b)

for any z ≥ 0. This assumption critically simplifies the analysis, because it ensures that
the trading probabilities can be expressed as functions of market tightness (section 4.2).
This assumption also appears appropriate in labor market data (section 4.8).

With constant returns to scale, the elasticity of the matching function with respect to
the number of buyers is directly connected to the matching elasticity:

(4.2)
b

m(s,b) ⋅
∂m(s,b)

∂b
= 1 − η.

This result is a direct application of Euler’s homogeneous function theorem. For a function
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that has constant returns to scale (homogeneous of degree 1), the theorem says that the
sum of the function’s elasticities with respect to all its variables is equal to 1.2

A fourth assumption is that thematching function is strictly concave in each argument,
s and b. This means that the matching function exhibits diminishing marginal returns to
the numbers of sellers and buyers, which seems natural.

A fifth typical assumption is that without buyers or sellers, the matching function is 0:
m(s,b) → 0 when s → 0 or b→ 0. This is also natural, since we need people on both sides
of the market for trades to occur.

A final, sixth assumption is that the number of trades that occur within the period
considered is less than the numbers of sellers and buyers: m(s,b) ≤ min(s,b). Indeed,
there cannot be more goods sold than sellers, and more goods bought than buyers. This
assumption is specific to discrete-time models, however. In a continuous-time model, the
matching function gives the flow of trades occurring at any point in time. Hence there is
no restriction on the level ofm(s,b).

4.3. Market tightness and trading probabilities

The matching functionm(s,b) tells us that, during a certain period, not all s sellers are
able to sell their good, and not all b buyers are able to buy a good. Therefore, we need to
figure out the probability that a seller is able to sell,

f = m(s,b)
s

,

and the probability that a buyer is able to buy,

q = m(s,b)
b

.

Our assumptions about the matching function have clear implications for how these
trading probabilities behave.

4.3.1. Market tightness

Before we start, we introduce a new fundamental variable, the market tightness:

θ = b
s
.

The tightness can be defined on any market with sellers and buyers.
2We can also obtain (4.2) by log-differentiating the constant-returns-to-scale condition (4.1) with respect to

z, using the results from appendix B. The differentiation should be around z = 1, for any (s, b). That process
tells us that the sum of the matching function’s elasticities with respect to the numbers of sellers and buyers
equals 1.
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Since both trading probabilities only depend on market tightness, tightness plays a
crucial role in the book—it summarizes the state of any market.

4.3.2. Selling probability

We then look at the selling probability:

f = m(s,b)
s

= m( s
s
,
b
s
) = m(1, b

s
),

since the matching function has constant returns to scale. We can re-express our selling
probability as a function of market tightness:

(4.3) f (θ) = m(1,θ).

Since the matching function is strictly increasing in its second argument, we infer that
the selling probability is strictly increasing in tightness. The tighter the market, the more
likely you are to sell. This makes sense because the tighter a market is, the more buyers
there are for each seller. And since the matching function is strictly concave in its second
argument, we infer that the selling probability is strictly concave in tightness. This means
that a higher tightness leads to a higher selling probability, but with diminishing returns.

We can also see that when tightness is 0, the selling probability must be 0. This is
because, in the matching function, when any of the two arguments is 0, there is no trade.
This is intuitive because if there are no buyers, there is no chance of selling anything, so
the probability of selling is 0.

Lastly, we know that the selling probability is always between 0 and 1 because the
matching function is always less than the minimum of its two arguments. Sincem(s, b) ≤
min(s,b), thenm(s,b) ≤ s and f ≤ 1.

4.3.3. Buying probability

Now, we shift our attention to the buying probability:

q = m(s,b)
b

= m( s
b
,
b
b
) = m( s

b
, 1),

since the matching function has constant returns to scale. Using market tightness, we can
rewrite the probability as:

(4.4) q(θ) = m( 1
θ
, 1),

so that the buying probability only depends on tightness.
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We can go over the properties of the buying probability in the same way. Because the
matching function is strictly increasing in its first argument, the buying probability is
strictly decreasing in tightness. This means that a buyer in a tight market is less likely
to be able to buy the good they want, since there are very few sellers and a lot of buyers,
increasing competition. This is true in any tight market: it is a good time to be a seller but
a bad time to be a buyer.

Moreover, at the limit where tightness is infinite, the buying probability is 0. The reason
is that at the limit, 1/θ → 0, and m(0,b) = 0. This makes sense because when infinitely
many buyers are competing to buy a good they want, the probability of buying that good
is bound to go to 0.

Finally, we know that the buying probability is always between 0 and 1 because the
matching function is always less than the minimum of its two arguments. Sincem(s, b) ≤
min(s,b), thenm(s,b) ≤ b and q ≤ 1.

4.3.4. Relation between the trading probabilities

There is a simple relationship between the two trading probabilities. The number of trades
is f (θ)s = q(θ)b, so f (θ)/q(θ) = b/s = θ. That is, for any matching function:

(4.5) f (θ) = θq(θ).

From this result we also see that the elasticities of the trading probabilities with respect
to tightness are necessarily related:

ϵ
f
θ
= 1 + ϵq

θ
.

From (4.4), and the results in appendix B on the elasticity of composite functions, we see
that the elasticity of the buying probability is directly related to the matching elasticity η:

(4.6) ϵ
q
θ
= −η.

Thus, the elasticity of the selling probability is also related to the matching elasticity:

(4.7) ϵ
f
θ
= 1 − η.

Once again, these elasticities might or might not be constant, depending on the matching
function.
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4.4. Urn-ball matching function

We now study the urn-ball matching function. This matching function is useful because it
has a simple microfoundation, which draws on the urn-ball model in probability theory.

4.4.1. Foundation

Several researchers proposed an urn-ball foundation to explain why trading probabilities
might be less than 1 in a given period.

Butters (1977) used the urn-ball framework in the product market. In this model, firms
advertise their products by dropping ads into customers’ mailboxes. The probability to
sell is less than 1 because several firms might drop their ad in the same mailbox, in which
case the customer only buys from the cheapest firm. The probability to buy is also less
than 1, because a customer might not receive any ad in their mailbox.

Hall (1979) used a similar setup in the labormarket. In thismodel, firms simultaneously
and randomly make job offers to job seekers. The probability to hire a job seeker is less
than 1 because several firms might make a job offer to the same job seeker, who cannot
accept more than one offer. The probability to find a job is also less than 1 because a job
seeker might be unlucky and not receive any of the job offers.

Both of these situations correspond to an urn-ball setup. In Butters’s example, the ads
are the balls and the mailboxes are the urns. In Hall’s example, the job offers are the balls
and the job seekers are the urns.

In this section, we consider as an example the haircut market. There are b customers
who are looking for a haircut, and s hairdressers. Each hairdresser can only accommodate
one customer at a time, so if two customers pick the same hairdresser, only one can get
a haircut. Because customers do not know where the others go, they don’t know which
hairdressers already serve a customer and which hairdressers are idle. Such coordination
failure means that some customers cannot get a haircut and some hairdressers do not get
customers.

4.4.2. Expression

We now derive the number of haircuts sold in a simple situation: b > 0 customers in need
of a haircut each go to one of s > 0 open hair salons. The customers pick their hair salons
simultaneously and randomly. That day, customers can only make one trip to the hair
salon.

The probability that a specific customer goes to a specific hairdresser is 1/s, and the
probability that the customer does not go to the hairdresser is 1 − 1/s. Accordingly, the
probability that a specific hairdresser does not get a visit from any of the b customers
is (1 − 1/s)b. Conversely, the probability that a specific hairdresser gets at least one visit
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is 1 − (1 − 1/s)b. Since a hairdresser sells a haircut if at least one customer visits, this
probability gives the probability to sell a haircut for a specific hairdresser, as well as the
expected number of haircuts sold by the hairdresser (since the hairdresser sells either 0
or 1 haircut). Then, the expected number of haircuts sold by all hairdressers is just

m(s,b) = s
⎡⎢⎢⎢⎣
1 − (1 − 1

s
)
b⎤⎥⎥⎥⎦
.

This is the expected number of trades that occur on the haircut market. This matching
function is a little cumbersome, but it can be greatly simplified when the number of
hairdressers is large enough.

To simplify the above matching function, we use a linear approximation of the log-
arithm: ln(1 − x) ≈ −x when x is small. This approximation allows us to rewrite the
probability that a hairdresser gets no visit at all:

(1 − 1
s
)
b
= exp(b ⋅ ln(1 − 1

s
)) ≈ exp(b ⋅ −1

s
) = exp(−b

s
).

We can then rewrite our matching function, which is the expected number of haircuts
sold:

(4.8) m(s,b) = s [1 − exp(−b
s
)] .

This is the urn-ball matching function, which gives the number of trades for a given
number of sellers, s, and buyers, b.

4.4.3. Properties

By looking at the matching function (4.8), we can verify that it satisfies the general prop-
erties mentioned in section 4.2.

First, we confirm that thematching function is positive, and at the limit without sellers
or buyers, the matching function is 0.

Second, we easily see that the matching function has constant returns to scale:

m(zs, zb) = zs [1 − exp(−zb
zs
)] = zm(s,b).

Third, we check that the matching function is increasing in each argument. We imme-
diately see from (4.8) that if the number of buyers goes up, the number of haircuts also
increases. Formally, the partial derivative of the matching function with respect to the
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number of buyers is simply:
∂m
∂b
= exp(−b

s
) > 0.

Showing that the number of haircuts increases with the number of hairdressers is a little
bit more tricky since s has two opposite influences on the matching function. We must
calculate the derivative formally to check that it is positive. After simplifying, we get:

(4.9)
∂m
∂s
= 1 − (1 + b

s
) exp(−b

s
).

By using the fact that 1 + x < exp(x) for all x > 0, we infer that (1 + x)exp(−x) < 1 for
all x > 0, so we verify that ∂m/∂s > 0. From this we conclude that the matching function
is increasing in s. Thus, we confirm that the matching function is increasing in its two
arguments.

Fourth, we verify that the matching function is concave in each argument. Clearly
∂m/∂b is decreasing in b, which tells us the matching function is concave in the number
of buyers. The second derivative of the matching function with respect to the number of
sellers is

∂2m
∂s2
= −b

2

s3
exp(−b

s
);

since ∂2m/∂s2 < 0, the function is also concave in the number of sellers.
Finally, the matching function is less than its two arguments. Since exp(−x) > 0, it is

clear thatm(s,b) ≤ s. Using again exp(x) ≥ 1 + x, we obtain

m(s,b) ≤ s [1 − (1 − b
s
)] = b.

So overallm(s,b) ≤ min(s, b).
The trading probabilities given by the urn-ball matching function are illustrated in

figure 4.1.

4.4.4. Matching elasticity

A key statistic to describe the shape of the matching function is the matching elasticity:
the elasticity of the matching function with respect to the number of sellers. We compute
the matching elasticity to better understand how the urn-ball matching function behaves.

We start from the definition of the matching elasticity:

η = s
m(s,b) ⋅

∂m
∂s
.
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FIGURE 4.1. Selling and buying probabilities from urn-ball matching function

The urn-ball matching function is given by (4.8). The selling and buying probabilities are computed from the
matching function with (4.3) and (4.4).

Using the partial derivative (4.9), we can write the matching elasticity as

η = s
m(s,b) ⋅ [1 − exp(

−b
s
)] − b

m(s,b) ⋅ exp(
−b
s
).

Given that the matching function m(s,b) is given by (4.8), we can easily express the
matching elasticity as a function of the tightness of the market:

η(θ) = 1 − θ

exp(θ) − 1 .

The matching elasticity is an increasing function of tightness, growing from 0 when
tightness is 0, to 1 − 1/e when tightness is 1, to 1 when tightness is infinite.

The properties of the matching elasticity can be shown by using the definition of the
exponential function via Taylor series:

exp(θ) =
∞

∑
n=0

θn

n!
, so

exp(θ) − 1
θ

= 1 +
∞

∑
n=1

θn

(n + 1)! .

All the terms θn/(n + 1)! in the sum are increasing in θ ≥ 0, so the function [exp(θ) − 1]/θ
is increasing in θ, which tells us that η(θ) is increasing in θ. All the terms in the sum are
0 when θ = 0, which tells us that η(0) = 0. And all the terms in the sum grow to∞when
θ→∞, which tells us that η(θ) → 1 as θ→∞.

The behavior of the elasticity means that when there are no buyers on the market
(θ = 0), adding more sellers does not lead to any more trades. The intuition is that the
market is already extremely congested with sellers, so more sellers do not bring more
trade: only more buyers would generate more trades. On the other hand, when there are
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almost no sellers (θ→∞), adding 1% more sellers generates 1% more trades, even with a
fixed number of buyers. In that case the number of trades is almost solely determined by
the number of sellers, so numbers of sellers and trades grow proportionally.

4.5. Constant-elasticity-of-substitutionmatching function

Despite its simple microfoundation, the urn-ball matching function is not used often in
theoretical work, because it is a little cumbersome. Instead, it is preferable to use the
constant-elasticity-of-substitution (CES) matching function, as it is much more tractable.
While it does not have a microfoundation as simple as the urn-ball process, it is possible
to obtain a CES matching function from a Poisson queuing process in which sellers call
buyers to advertise their goods (Stevens 2007), and from an Erdos-Renyi network in which
sellers and buyers are connected (Angelis and Bramoulle 2023).

4.5.1. Expression

The CES matching function takes the following form:

(4.10) m(s,b) = (s−σ + b−σ)−1/σ .

The parameter σ > 0 governs the elasticity of substitution between s and b.

4.5.2. Properties

We can again check that all the general properties of amatching function are satisfied here.
First, the CES matching function is positive and increasing in each argument. Second, at
the limit without buyers or sellers, the matching function is 0. Third, the CES function
has constant returns to scale:

m(zs, zb) = [(zs)−σ + (zb)−σ]−1/σ = zm(s,b).

To verify that the function is concave in each argument, we compute its derivatives.
For instance, the partial derivative with respect to b is

∂m
∂b
= [1 + (b

s
)
σ

]
−
1+σ
σ

.

The partial derivative is not only positive but also decreasing in b. From this we infer that
the CES matching function is concave in the number of buyers. The matching function is
completely symmetric in b and s, so it is also concave in the number of sellers.
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FIGURE 4.2. Selling and buying probabilities from different CES matching functions

The CES matching functions are given by (4.10) with σ = 0.5, σ = 1, and σ = 2. The selling and buying
probabilities are computed from the matching functions with (4.3) and (4.4).

Lastly, we verify that the CES matching function is less than the minimum of its two
arguments. Since b−σ > 0, then s−σ + b−σ > s−σ. Hence,

m(s,b) = (s−σ + b−σ)−1/σ < (s−σ)−1/σ = s.

Similarly, we findm(s,b) < b, which overall tells us thatm(s,b) ≤min(s,b).
The trading probabilities given by the CES matching function are illustrated in fig-

ure 4.2.

4.5.3. Matching elasticity

The matching elasticity is the elasticity of the matching function with respect to the
number of sellers. With the CES matching function (4.10), the elasticity varies with the
tightness of the market.

We compute the matching elasticity using the elasticity results from appendix B. We
can express the matching elasticity as a function of market tightness:

η(θ) = −1
σ
⋅ s−σ

s−σ + b−σ ⋅ (−σ)

so that
η(θ) = 1

1 + θ−σ .

The matching elasticity is an increasing function of tightness, growing from 0 when
tightness is 0, to 1/2 when tightness is 1, to 1 when tightness is infinite. Just like in the
case of the urn-ball matching function, the behavior of the matching elasticity implies
that when there are no buyers on the market, adding more sellers does not lead to any
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more trades, while when there are almost no sellers, numbers of sellers and trades grow
proportionally.

With the CES matching function, it is easy to see what happens when there are very
few sellers and buyers. We can rewrite the matching function (4.10) as

m(s,b) = b ⋅ [1 + θσ]−1/σ ,

where θ = b/s is the market tightness. When tightness is close to 0, θσ is negligible com-
pared to 1, so the matching function approximates the number of buyers:m(s, b) ≈ b. This
means that when the number of buyers is small, the number of buyers gives the number
of trades, irrespective of the number of sellers.

Since the matching function (4.10) is symmetric in b and s, we can also rewrite it as

m(s,b) = s ⋅ [1 + θ−σ]−1/σ ,

When tightness is very large, θ−σ is negligible compared to 1, so the matching function
approximates the number of sellers: m(s,b) ≈ s. This means that when the number of
sellers is small, the number of sellers gives the number of trades, irrespective of the
number of buyers.

4.6. Cobb-Douglas matching function

Maybe the most popular of all matching functions is the Cobb-Douglas matching function.
It is appealing because it is even easier to manipulate than the CES matching function,
and it describes the US labor market well (Blanchard and Diamond 1989; Petrongolo and
Pissarides 2001). There are no standard microfoundations for the Cobb-Douglas matching
function, but just like the CES matching function, it is possible to obtain it from a Poisson
queuing process or an Erdos-Renyi network (Stevens 2007; Angelis and Bramoulle 2023).
The main drawback of the Cobb-Douglas matching function is that it does not guarantee
thatm(s,b) ≤ min(s,b), so it must be truncated in discrete-time models to avoid trading
probabilities greater than 1.

4.6.1. Expression

The Cobb-Douglas matching function takes the following form:

(4.11) m(s,b) = µ ⋅ sσ ⋅ b1−σ.

The parameter µ > 0 governs the efficacy of thematching process. The parameter σ ∈ (0, 1)
governs the shape of the matching function.
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FIGURE 4.3. Selling and buying probabilities from different Cobb-Douglas matching func-
tions

The Cobb-Douglas matching functions are given by (4.11) with µ = 0.5 and σ = 0.25, σ = 0.5, σ = 0.75. The
selling and buying probabilities are computed from the matching functions with (4.3) and (4.4).

4.6.2. Properties

We easily check that the Cobb-Douglas function satisfies the typical properties of a match-
ing function. The function is clearly positive. If there are no sellers or no buyers, the
function is clearly 0. The function is increasing and concave in each argument. Last, the
Cobb-Douglas matching function has constant returns to scale:

m(zs, zb) = µ(zs)σ(zb)1−σ = zm(s,b).

The Cobb-Douglas matching function has one main limitation: it is not always less
than theminimum of its two arguments. In a continuous-timemodel, where thematching
function describes the flow of trades at any point in time, this is not an issue. But in a
discrete-time model, where the matching function describes the number of trades in a
period, this is an issue because it might lead to trading probabilities that are greater than
1. To avoid trading probabilities that are greater than 1, the matching function must be
truncated by imposing

(4.12) m(s,b) = min(µ ⋅ sσ ⋅ b1−σ, s,b).

The truncation in turn might create difficulties in numerical and theoretical work (den
Haan, Ramey, and Watson 2000).

The trading probabilities given by the Cobb-Douglas matching function are illustrated
in figure 4.3.

17



4.6.3. Matching elasticity

A reason why the Cobb-Douglas matching function is particularly convenient is that its
matching elasticity is constant: η = σ. This property often greatly simplifies the analysis.

Relatedly, the trading probabilities that it produces are really easy to deal with. We
can obtain them directly using (4.3) and (4.4):

f (θ) = m(1,θ) = µθ1−σ, q(θ) = m( 1
θ
, 1) = µθ−σ.

In particular, the trading probabilities have constant elasticity with respect to tightness:
ϵ
f
θ
= 1 − σ and ϵ

q
θ
= −σ.3

4.7. Penalized Cobb-Douglas matching function

The Cobb-Douglas matching function is very popular, but it does not produce an isoelastic
Beveridge curve. This property is inconsistent with the US Beveridge curve, which appears
to have a constant elasticity (chapter 3). The non-isoelastic Beveridge curve also compli-
cates some of the welfare and policy analysis (chapter 9). However, in continuous-time
dynamic models, it is easy to generate an isoelastic Beveridge curve by adding a small
penalty to the Cobb-Douglas function, as proposed by Michaillat and Saez (2024).

4.7.1. Expression

The penalized Cobb-Douglas matching function takes the following form:

(4.13) m(s,b) = µ ⋅ sσ ⋅ b1−σ − λ ⋅ s.

The novelty relative to the standard Cobb-Douglas matching function is the small penalty
−λ ⋅ s added to the function. The parameter λ > 0 dictates the size of the penalty; it is small
relative to µ in practice.

4.7.2. Properties

The penalized Cobb-Douglas function satisfies the standard properties of a matching
function, but it requires that the arguments remain within a slightly reduced range (in
essence that tightness is not too low).

First, the matching function has constant returns to scale:

m(zs, zb) = µ(zs)σ(zb)1−σ − λ ⋅ (zs) = zm(s,b).
3These expressions show that f (θ) is larger than 1 when θ is high enough, and q(θ) is larger than 1 when

θ is low enough. This is why the Cobb-Douglas matching function must be truncated in discrete-time models.
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FIGURE 4.4. Selling and buying probabilities from penalized Cobb-Douglas matching
function

The penalized Cobb-Douglas matching function is given by (4.13) with µ = 0.5, σ = 0.5 and λ = 0.05. The
selling and buying probabilities are computed from the matching function with (4.3) and (4.4). The figure
also compares the penalized Cobb-Douglas matching function to a regular Cobb-Douglas matching function
calibrated with µ = 0.5 and σ = 0.5.

Second, the function is increasing and concave in b, just like the standardCobb-Douglas
function.

Third, the function is concave in s, as it is the sum of two functions that are themselves
concave in s: the Cobb-Douglas function s ↦ µsσb1−σ and the linear function s ↦ −λs.

Fourth, the function is increasing in s, as long as tightness θ = b/s is not too low. Taking
the partial derivative of thematching function, we see that the partial derivative is actually
a function of tightness only:

∂m
∂s
= µσθ1−σ − λ.

Hence the derivative is positive for any tightness above the lower bound
¯
θ, given by

¯
θ = ( λ

µσ
)

1
1−σ

.

Fifth, the function is positive, as long as tightness is not too low. Dividing (4.13) by s,
we find that the function is positive as long as µθ1−σ − λ ≥ 0, which requires tightness to
be high enough:

θ ≥ (λ
µ
)

1
1−σ

.

This bound on tightness is lower than
¯
θ, since σ < 1.

Sixth, the function is 0 when s = 0. When b = 0, the function would be negative, which
is why we impose a lower bound on tightness: so b is large enough that the matching
function is always positive.
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Overall, for any tightness in (
¯
θ,∞), the penalized Cobb-Douglas matching function is

positive, has constant returns to scale, is increasing and concave in each argument. The
penalty parameter λ is generally much lower than the efficacy parameter µ, so the lower
bound on tightness

¯
θ is close to 0.

The trading probabilities given by the penalized Cobb-Douglas matching function are
illustrated in figure 4.4. As we can see on the figure, the trading probabilities are very
close to those for a regular Cobb-Douglas matching function when λ/µ is small. As an
illustration, we set λ/µ = 0.1 in the figure. The implied lower bound on tightness is

¯
θ = 0.04.

4.7.3. Matching elasticity

The matching elasticity is the elasticity of the matching function with respect to the num-
ber of sellers. With the penalized Cobb-Douglas matching function (4.13), the matching
elasticity is almost constant.

We compute the matching elasticity using the results from appendix B. For θ >
¯
θ, it is

given by

η(θ) = σ − (1 − σ) ⋅ λs
m
= σ − (1 − σ) ⋅ λ

f (θ) .

The second expression shows that unlike for the Cobb-Douglas matching function, the
matching elasticity is not constant: it is an increasing function of tightness, since the
selling probability f (θ) is increasing in tightness. But in practice these fluctuations are
bound to be small. The first expression shows that the matching elasticity is only slightly
below the parameter σ since the penalty term λs is small relative to the matching function
m. Hence, the matching elasticity of the penalized Cobb-Douglas function is close to that
of the underlying Cobb-Douglas function when the penalty term is small: η(θ) ≈ σ.

4.8. Empirical properties of the matching function

To conclude this chapter, we briefly review the empirical properties of the matching
function to convince ourselves that our theoretical assumptions give us a matching func-
tion that describes the real world well. When matching functions were first developed,
researchers examined the data to ensure that they built functions that were realistic (Blan-
chard and Diamond 1989; Petrongolo and Pissarides 2001). Here we review modern US
data to do the same.

Data on sellers and buyers are most readily available on the labor market, where we
have good counts of who sells labor ( job seekers) and who buys labor (vacant jobs). Thus
we focus on the matching function for the labor market.

A central assumption is that the matching function has constant returns to scale. The
main implication is that the market tightness determines the rates at which sellers and
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FIGURE 4.5. Labor market tightness in the United States, 1948–2024

Labor market tightness is the ratio of vacancy rate to unemployment rate. The unemployment rate comes
from figure 3.1 while the vacancy rate comes from figure 3.5. Shaded areas indicate recessions dated by the
NBER (2023).

buyers trade on the market. On the labor market, this means that labor market tightness
determines the rate at which job seekers find jobs and the rate at which vacant jobs are
filled. We only have data to compute the job-finding rate over a long period of time, so we
concentrate on the link between job-finding rate and labor market tightness here.

For reference, we plot the US labormarket tightness between 1948 and 2024. Labormar-
ket tightness is computed as the number of job vacancies per job seeker, or equivalently,
the ratio of vacancy rate to unemployment rate.4We start in 1948 because that is when the
BLS started to collect the data that we need to compute the job-finding rate (CPS data). We
see that labor market tightness is sharply procyclical. It averages 0.69 between 1948 and
2024. Over that period, tightness reached its highest level, 1.98, during the recovery from
the pandemic (2022:Q2) and its lowest level, 0.16, during the Great Recession (2009:Q3).

We start with the rate at which job seekers find jobs, and correlate this rate with labor
market tightness. To compute the job-finding rate, we follow Shimer (2012). In month
t, u(t) workers are looking for jobs. Some of them find a job in the month, and some
do not. Those who do not find a job remain unemployed, so u(t) − u(t + 1) seems to
indicate the number of workers who have been able to find a job. There is a complication,

4In practice some vacancies are filled not by unemployed workers but by employed workers moving
between jobs. The present empirical approach is valid as long as the number of vacancies captures well the
demand for unemployed labor.
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however. Some workers who were employed lose their jobs in month t and join the pool
of unemployed workers. We need to account for those when we compute the number of
job seekers who found a job. We denote by us(t + 1) the number of workers who were
previously employed and who have joined unemployment betweenmonths t and t+1. The
number of workers who have found a job within month t is u(t) − [u(t + 1) − us(t + 1)].5

Dividing this number of job finders by the number of job seekers in month t, we obtain
the probability of finding a job in month t:

F(t) = 1 − u(t + 1) − u
s(t + 1)

u(t) .

To calculate F(t), we measure u(t) as the number of unemployed persons in month
t computed by the BLS (2025b), and us(t) as the number of persons who have been
unemployed for less than 5 weeks in month t computed by the BLS (2025a).6

Assuming that unemployed workers find a job according to a Poisson process with
monthly arrival rate f (t), the probability that they have not found a job after a month
is exp(− f (t)), so the probability that they have found a job within one month is F(t) =
1 − exp(− f (t)). Hence, we infer the job-finding rate from the job-finding probability:

(4.14) f (t) = − ln(1 − F(t)).

We thus obtain the monthly job-finding rate in the United States (figure 4.6A). Over
1948–2024, the job-finding rate is highly procyclical and averages 0.56 per month. This
means that on average, a US job seeker takes 1/0.56 = 1.8 months to find a job.

Our objective is to assess whether labor market tightness determines the job-finding
rate. Just like in figure 3.8, we focus on the 1948–2019 period, which is when the Beveridge
curve and matching function were quite stable. To uncover the relationship between
tightness and job-finding rate, we plot the logarithm of the job-finding rate against the
logarithm of tightness. To remove slow changes in thematching function, we detrend both
series using an HP filter with smoothing parameter 10,000. We find that log job-finding
rate is largely determined by log labor market tightness: the least-squares regression gives
R2 = 0.89, with a coefficient of 0.40 (figure 4.6B). This result indicates that the job-finding
rate is well described as an isoelastic function of tightness, with an elasticity of 0.40.

Overall, we find that the job-finding rate is a stable function of tightness, which sup-
ports the assumption that thematching function has constant returns to scale. In addition,
we have seen that the elasticity of the job-finding rate with respect to tightness appears

5This calculation assumes that workers only transition between employment and unemployment. In
reality, some workers move in and out of the labor force. But the approach is valid as long as the numbers of
job seekers who exit and enter the labor force are similar.

6Following Shimer (2012, appendix A), we multiply the series for us(t) by 1.1 after January 1994 to correct
for a change in the design of the CPS.

22



1950 1960 1970 1980 1990 2000 2010 2020
0

0.25

0.5

0.75

1
M

on
th

ly
 jo

b-
fin

di
ng

 ra
te

A. Monthly job-finding rate in the United States, 1948–2024
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FIGURE 4.6. The US job-finding rate is an isoelastic function of labor market tightness

Themonthly job-finding rate is computed from (4.14). Labor market tightness comes from figure 4.5. In panel
A, shaded areas indicate recessions dated by the NBER (2023). In panel B, the series are detrended by applying
a HP filter with smoothing parameter of 10,000.
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constant, which suggests that the matching elasticity is constant. This finding suggests
that a Cobb-Douglas matching function, which has a constant matching elasticity, de-
scribes the US labor market better than the urn-ball or CES matching functions, which
have matching elasticities that respond strongly to tightness. Furthermore, the matching
elasticity that appears from the regression is η = 0.60, using (4.7).

The empirical findings in this section are in line with findings in the literature on the
matching function. Early aggregate studies of the US labor market find that the matching
function involves the stock of unemployedworkers and job vacancieswith constant returns
to scale (Petrongolo and Pissarides 2001). The studies converge on a Cobb-Douglas form
with a matching elasticity between 0.5 and 0.7. More recent studies obtain comparable
results. Shimer (2005, table 2) estimates the matching elasticity at 0.72; Rogerson and
Shimer (2011, p. 638) obtain an estimate of 0.58; and Borowczyk-Martins, Jolivet, and
Postel-Vinay (2013, table 1) report a lower estimate of 0.30.

4.9. Summary

In this chapter we introduce the matching function as a key tool for modeling slackish
markets, where trade is not instantaneous and requires time and effort from both buyers
and sellers. Unlike Walrasian markets where trades are seamless, real-world markets are
characterized by complexities that make it difficult for buyers and sellers to find each
other. The matching function is an aggregate tool, similar to a production function, that
captures the outcome of this complex trading process without modeling the micro-level
details explicitly.

The chapter presents four specific types of matching functions: urn-ball, CES, Cobb-
Douglas, and penalized Cobb-Douglas, which each have their advantages and drawbacks.
We discussed the advantages and drawbacks of each functional form. For instance, the
CES function is useful in theoretical work, while the penalized Cobb-Douglas function is
useful to produce an isoelastic Beveridge curve.

Finally, the chapter reviews empirical evidence onmatching from the US labormarket,
which supports the use of amatching functionwith constant returns to scale. Furthermore,
this evidence suggests a Cobb-Douglas matching function is a good approximation for the
US labor market, because the matching elasticity appears roughly constant.
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