$u^* = \sqrt{uv}$: The full-employment rate of UNEMPLOYMENT IN THE UNITED STATES

Pascal Michaillat, Emmanuel Saez

Brookings Papers on Economic Activity, 2024

Available at https://pascalmichaillat.org/13/

US GOVERNMENT'S FULL-EMPLOYMENT MANDATE

- Employment Act of 1946
 - "Policy and responsibility of the federal government...to promote maximum employment"
- Federal Reserve Reform Act of 1977
 - Responsibility of the Federal Reserve "to promote effectively the goals of maximum employment, stable prices"
- Full Employment and Balanced Growth Act of 1978
 - "Responsibility of the federal government...to foster and promote...full employment"
- Goal: compute the full-employment rate of unemployment (FERU)

HOW TO INTERPRET LEGAL CONCEPT OF FULL EMPLOYMENT?

- Employment Act of 1946:
 - Full employment allows "to foster ... general welfare"
- Full Employment and Balanced Growth Act of 1978:
 - Away from full employment, the economy "is deprived of the full supply of goods and services, the full utilization of labor ... and the related increases in economic well-being"
- Full employment = social efficiency
- → FERU = efficient rate of unemployment

$NAIRU \neq FERU$

- Joint Economic Committee (2019):
 - "Today, full employment is considered by many to be synonymous with the non-accelerating inflationary rate of unemployment (NAIRU)—the rate of unemployment that neither stokes nor slows inflation."
- Council of Economic Advisors (2024):
 - "Modern economics has generally defined full employment by citing the theoretical concept of the lowest unemployment rate consistent with stable inflation, which is referred to as u^{*}, ... the non-accelerating inflationary rate of unemployment (NAIRU)."
- But the NAIRU indicates price stability ≠ labor market efficiency
- → NAIRU ≠ appropriate marker of full employment

$NRU \neq FERU$

- Boston Fed President Rosengren (2014):
 - Measures the departure of the Fed from its full-employment mandate by "the squared deviations of unemployment from an estimate of full employment utilizing the Congressional Budget Office (CBO) assessment of the natural rate for each year."
- But the CBO's natural rate of unemployment (NRU) is premised on the assumption that the US labor market was at full employment in 2005
- → No reason that NRU = appropriate marker of full employment

DERIVATION OF FERU FORMULA

LABOR AVAILABLE FOR MARKET PRODUCTION = LABOR FORCE

- Employment Act of 1946:
 - "Promote employment opportunities for those able, willing, and seeking to work"
- Workers that can be tapped for market production = labor force
 - People out of the labor force: in school or training, retired, looking after their family
- Participation rate is acyclical (Rees 1957; Shimer 2009; Rogerson, Shimer 2011)
 - \sim Labor force is exogenous
 - But formula $u^* = \sqrt{uv}$ remains valid even if labor force participation is endogenous, by an envelop-theorem logic

SOCIAL PRODUCT OF UNEMPLOYED LABOR = 0

- Share *u* of labor force is unemployed
- Contributions of unemployed labor to social output:
 - Contribution from jobseeking = 0
 - Contribution from home production > 0
 - Contribution from idleness < 0: psychosocial cost
- Psychosocial cost of unemployment offsets home production (Borgschulte, Martorell 2018; Hussam et al 2022)
 - → Social product of unemployed labor = 0
- Various mechanisms behind large cost of unemployment:
 - Loss of daily routine, of regular social interactions, of overarching goals, of personal status & identity (Jahoda 1981)

SOCIAL PRODUCT OF EMPLOYED LABOR

- Share v of labor force is employed and recruiting
 - \sim Social product of recruiting = 0
- Share 1 (u + v) of labor force is employed and producing
 - \sim Social product of producing > 0
- 1 vacancy requires 1 full-time recruiter
 - National Employer Survey in 1997 (Villena Roldan 2010)
 - Bersin survey in 2011 (Gavazza, Mongey, Violante 2018)
 - Number of recruiters = number of vacancies

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 1951-1961

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 1951-1961

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 1961–1971

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 1972–1989

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 1989–1999

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 1999-2009

BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA: 2009–2019

COMPUTING THE FERU

- Planner's objective: minimize nonproductive use of labor u + v
 - Unemployment rate *u*: value of home production & recreation is offset by psychosocial cost of unemployment
 - Vacancy rate v: 1 vacancy requires 1 worker devoted to recruiting
- Subject to hyperbolic Beveridge curve u × v = A
 - u and v cannot be reduced simultaneously
- First-order condition gives efficient unemployment rate *u**:

$$\frac{d[u+A/u]}{du} = 0 \Rightarrow 1 - A/(u^*)^2 = 0 \Rightarrow u^* = \sqrt{A}$$

- \rightarrow FERU is geometric average of *u* and *v*: $u^* = \sqrt{uv}$
 - FERU is > 0, determined by location of Beveridge curve

CRITERION FOR FULL EMPLOYMENT

- Economy is at full employment when $u = u^* = \sqrt{uv}$
 - \rightarrow At full employment when u = v
- Economy is inefficiently slack when $u > u^* = \sqrt{uv}$
 - \sim Inefficiently slack when u > v
- Economy is inefficiently tight when $u < u^* = \sqrt{uv}$
 - \sim Inefficiently tight when u < v

FERU IN THE UNITED STATES, 1930-2024

US UNEMPLOYMENT RATE (PETROSKY-NADEAU, ZHANG 2021)

US VACANCY RATE (PETROSKY-NADEAU, ZHANG 2021)

MIRROR MOVEMENTS OF U & V INDICATE AGAIN THAT US BEVERIDGE CURVE IS A RECTANGULAR HYPERBOLA

LABOR MARKET IS GENERALLY TOO SLACK

LABOR MARKET IS TOO TIGHT DURING WARS

FERU $u^* = \sqrt{uv}$ averages 4.1% and is stable

UNEMPLOYMENT GAP IS COUNTERCYCLICAL

UNEMPLOYMENT GAP IS COUNTERCYCLICAL

CURRENT TARGET FOR MONETARY POLICY: $u^* = 4.4\%$

WHY DID THE FERU INCREASE SO MUCH IN 2020? BECAUSE THE BEVERIDGE CURVE SHIFTED OUTWARD IN 2020Q2

WHY DID THE FERU INCREASE SO MUCH IN 2020? BECAUSE THE BEVERIDGE CURVE SHIFTED OUTWARD IN 2020Q2

WHY DID THE FERU INCREASE SO MUCH IN 2020? BECAUSE THE BEVERIDGE CURVE SHIFTED OUTWARD IN 2020Q2

TIGHTNESS v/u summarizes state of labor market

TIGHTNESS v/u summarizes state of labor market

TIGHTNESS v/u summarizes state of labor market

ROBUSTNESS OF US FERU

FERU WITH DIFFERENT MEASURES OF UNEMPLOYMENT

FERU WITH DIFFERENT MEASURES OF UNEMPLOYMENT

FERU WITH DIFFERENT MEASURES OF UNEMPLOYMENT

GENERALIZED FERU FORMULA (MICHAILLAT, SAEZ 2021)

- Social product of unemployed labor: $0 \rightarrow \zeta$
- Number of recruiters per vacancy: $1 \rightarrow \kappa$
- Elasticity of Beveridge curve: $v = A/u \rightarrow v = A/u^{\epsilon}$
- Generalized FERU formula:

$$u^* = \sqrt{uv} \quad \rightarrow \quad u^* = \left(\frac{\kappa \cdot \epsilon}{1 - \zeta} \cdot u^{\epsilon} \cdot v\right)^{1/(1+\epsilon)}$$

- Calibration for US economy:
 - $-\zeta = 0.26$
 - $-\kappa = 0.92$
 - $-\ \varepsilon \in [$ 0.84, 1.02], given by Bai, Perron (1998) algorithm

FERU FORMULA: SIMPLE \approx GENERALIZED

FERU FORMULA: SIMPLE \approx GENERALIZED

APPLICATION OF FERU TO MONETARY POLICY

FED CAN ACHIEVE FULL EMPLOYMENT IN BOOMS BY RAISING INTEREST RATES (MICHAILLAT, SAEZ 2022)

FED CAN ACHIEVE FULL EMPLOYMENT IN BOOMS BY RAISING INTEREST RATES (MICHAILLAT, SAEZ 2022)

FED CAN ACHIEVE FULL EMPLOYMENT IN BOOMS BY RAISING INTEREST RATES (MICHAILLAT, SAEZ 2022)

FED CAN ACHIEVE FULL EMPLOYMENT IN SMALL SLUMPS BY REDUCING INTEREST RATES (MICHAILLAT, SAEZ 2022)

FED CAN ACHIEVE FULL EMPLOYMENT IN SMALL SLUMPS BY REDUCING INTEREST RATES (MICHAILLAT, SAEZ 2022)

FED CAN ACHIEVE FULL EMPLOYMENT IN SMALL SLUMPS BY REDUCING INTEREST RATES (MICHAILLAT, SAEZ 2022)

BUT FED CANNOT ACHIEVE FULL EMPLOYMENT IN LARGE SLUMPS BECAUSE OF ZLB (MICHAILLAT, SAEZ 2022)

BUT FED CANNOT ACHIEVE FULL EMPLOYMENT IN LARGE SLUMPS BECAUSE OF ZLB (MICHAILLAT, SAEZ 2022)

WHEN IS IT OPTIMAL FOR FED TO TARGET FERU?

- Targeting *u*^{*} is optimal with fixed inflation (Michaillat, Saez 2022)
- Targeting u^{*} is also optimal when inflation is endogenous but divine coincidence holds (Michaillat, Saez 2024)
- Then, if current nominal interest rate is r and current unemployment gap is $u u^*$, optimal nominal interest rate r^* is:

$$r-r^* \approx \frac{u-u^*}{du/dr}$$

- In the US, monetary multiplier $du/dr \approx 0.5$ (Michaillat, Saez 2022)
- Fed should reduce interest rates by 2 percentage points for each percentage point of unemployment gap
- → In line with observed Fed behavior (Bernanke, Blinder 1992)

HOW TO USE FERU IF DIVINE COINCIDENCE FAILS?

- Social planner minimizes welfare loss subject to Phillips curve
- Approximate welfare loss around efficient allocation (u^*, π^*) :

$$\mathcal{L}(u,\pi) = \left(\pi - \pi^*\right)^2 + \alpha \left(u - u^*\right)^2$$

• Approximate Phillips curve, with $\gamma \neq 0$ to break divine coincidence:

$$\pi - \pi^* = -\beta \left(u - u^* \right) + \gamma$$

• At the optimum, unemployment and inflation gaps satisfy:

$$\frac{u-u^*}{\pi-\pi^*}=\frac{\beta}{\alpha}>0$$

- Fed trades off unemployment and inflation gaps
- Targeting u* is no longer optimal, but u* influences optimal policy

WHY HAS THE US LABOR MARKET BEEN SO SLACK IN THE PAST CENTURY?

FERU IS LOWER THAN EXISTING UNEMPLOYMENT TARGETS

FERU IS LOWER THAN EXISTING UNEMPLOYMENT TARGETS

FERU IS LOWER THAN EXISTING UNEMPLOYMENT TARGETS

OTHER REASONS FOR INEFFICIENT SLACKNESS

- Great Depression:
 - Gold standard (Eichengreen, Temin 2000)
 - Policy errors (Friedman, Schwartz 1963)
- Volcker–Greenspan era:
 - Priority given to inflation (Thornton 2011; Kaya et al 2019)
 - Maybe due to pressure from Congress (Hess, Shelton 2016)
- Great Recession, pandemic:
 - Zero lower bound (Michaillat, Saez 2022)

ANOTHER APPLICATION OF UNEMPLOYMENT & VACANCY DATA: DETECTING RECESSIONS

DETECTING RECESSIONS WITH UNEMPLOYMENT: SAHM RULE

DETECTING RECESSIONS WITH UNEMPLOYMENT & VACANCIES: MICHEZ RULE (FT)

DETECTING RECESSIONS WITH UNEMPLOYMENT & VACANCIES: MICHEZ RULE (FT)

RECESSION MAY HAVE STARTED AS EARLY AS MARCH 2024

MICHEZ RULE PERFECTLY DETECTS 15 RECESSIONS SINCE 1929

