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Appendix A. Proofs

This appendix provides proofs that are omitted in the main text.

A.1. Proof of proposition 2

Defining the probability of type 1 error. We aim to compute the probability of type 1 error
S∗(z) when the critical value is set to z. This is the probability that the reported test
statistic R(z) exceeds z under the null hypothesis, given that any result is reported:

S∗(z) = P(R(z) > z | L > D1),

whereP denotes the probabilitymeasure underH0. Because the scientist can only report
a significant result if the first experiment is completed, P(R(z) > z,L > D1) = P(R(z) > z),
so

S∗(z) =
P(R(z) > z)
P(L > D1)

.

By definition, P(L > D1) = γ. Accordingly, the probability of type 1 error is

(A1) S∗(z) =
P(R(z) > z)

γ
.

Total probability of reporting a significant result. To apply formula (A1), we need to
compute P(R(z) > z). To do that, we use the law of total probability:

(A2) P(R(z) > z) =
∞∑
j=1

P(R(z) > z,N(z) = j).

Because the scientist can only stop at experiment j if she has already completed j – 1
experiments, P(R(z) > z,N(z) = j) = P(R(z) > z,N(z) = j ,N(z) > j – 1), so

P(R(z) > z,N(z) = j) = P(R(z) > z,N(z) = j | N(z) > j – 1)P(N(z) > j – 1).

Using this result, we rewrite equation (A2) as

(A3) P(R(z) > z) =
∞∑
j=1

P(R(z) > z,N(z) = j | N(z) > j – 1)P(N(z) > j – 1).

1



Probability of reporting a significant result at experiment j. To apply formula (A3), we
must compute P(R(z) > z,N(z) = j | N(z) > j – 1). The fact that N(z) > j – 1 means that
the project resources have not been exhausted during the first j –1 experiments, but that
the j – 1 test statistics collected have not been significant. Then the event that R(z) > z
andN(z) = j is realized if experiment j can be completed, which occurs with probability
γ, and if the test statistic obtained from experiment j is significant, which occurs with
probability S(z). We therefore find that

(A4) P(R(z) > z,N(z) = j | N(z) > j – 1) = γS(z).

Computing the probability of type 1 error. The probability (A4) is independent of j , which
greatly simplifies (A3):

(A5) P(R(z) > z) = γS(z) ·
∞∑
j=1

P(N(z) > j – 1) = γS(z) ·
∞∑
j=1

P(N(z) ≥ j).

Since the optimal stopping time N(z) is a nonnegative, integer-valued random variable,
we know from Ross (2014, p. 292) that

∞∑
j=1

P(N(z) ≥ j) = E(N(z)).

Moreover, proposition 1 establishes that the expected value of the optimal stopping
time is

E(N(z)) =
1

1 – γF(z)
.

Accordingly, the probability of reporting a significant result is

P(R(z) > z) =
γS(z)

1 – γF(z)
.

Combining this equation with (A1), we find that the probability of type 1 error is

S∗(z) =
S(z)

1 – γF(z)
.
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A.2. Proof of proposition 3

Expression of the robust critical value. We begin by rewriting the implicit definition of
the robust critical value, given by (8). Since the cumulative distribution function F and
survival function S are related by F = 1 – S, we rewrite (8) as

S(z∗)
1 – γ + γS(z∗)

= α.

This equation allows us to express S(z∗) as a function of the parameters α and γ:

S(z∗) = α · 1 – γ
1 – αγ

.

Inverting S, we obtain an explicit expression for the robust critical value:

(A6) z∗ = Z
(
α · 1 – γ

1 – αγ

)
,

where the function Z is the inverse of the survival function S.

Existence of the robust critical value. Sinceα ∈ (0, 1) and γ ∈ (0, 1), the ratio (1–γ)/(1–αγ)
is in (0, 1). Hence, the argument of the inverse survival function Z in (A6),α(1–γ)/(1–αγ),
is in (0,α) ⊂ (0, 1). As the domain of the inverse survival function is (0, 1), the robust
critical value exists for any α ∈ (0, 1) and γ ∈ (0, 1).

Comparing robust and classical critical values. The classical critical value is given by
Z(α), while the robust critical value is defined by (A6). Since the argument of the inverse
survival function Z in (A6) is strictly less than α, and since the inverse survival function
is strictly decreasing, the robust critical value is strictly larger than the classical critical
value: z∗ > Z(α).

Relation between robust critical value and significance level. The argument of the inverse
survival function Z in (A6) is strictly increasing in the significance level α ∈ (0, 1). Since
the inverse survival function is strictly decreasing, the robust critical value is strictly
decreasing in the significance level.
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Appendix B. Prevalence of p-hacking, and reasons for it

This appendix develops the argument made in the introduction that p-hacking is preva-
lent in science. It also discusses the reasons behind p-hacking. The first is that p-hacking
is rewarded because statistically significant results have greater payoffs than insignifi-
cant ones. The second is that p-hacking is not very costly because scientists have a lot
of flexibility in their empirical work.

B.1. Prevalence of p-hacking

P-hacking is prevalent in many sciences.

Survey of scientists. A survey of 5964 psychologists at major US universities conducted
by John, Loewenstein, and Prelec (2012, table 1) shows that p-hacking is common. 63%
of respondents admit to failing to report all outcomes. 56% admit to deciding whether
to collect more data after examining whether the results were significant. 46% admit to
selectively reporting studies that “worked”. 38% admit to deciding whether to exclude
data after looking at the impact of doing so on the results. 28% admit to failing to report
all treatments in a study. And 16% admit to stopping data collection earlier than planned
after obtaining the desired results.

Meta-analyses of published studies. The effects of p-hacking also appear inmeta-analyses
of published studies (Hutton and Williamson 2000; Head et al. 2015; Brodeur et al. 2016;
Vivalt 2019; Brodeur, Cook, and Heyes 2020; Elliott, Kudrin, and Wuthrich 2022). The
distributions of test statistics or p-values across studies in a literature show that scientists
tinker with their econometric specifications in order to obtain significant results.

Lifecycle of scientific studies. Franco, Malhotra, and Simonovits (2014, table 3) track a
cohort of 221 experimental studies in the social sciences, from experimental design
to publication, and find evidence of p-hacking. Indeed, 64.6% of the studies reporting
insignificant results were never written up, whereas only 4.4% of the studies reporting
strongly significant resultswere notwritten up. Thus, scientists report results selectively:
insignificant results are likely to remain unreported, whereas significant results are
almost certain to be reported.
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B.2. Rewards from significant results

Scientists hunt for significant results because such results are more rewarded than
insignificant results. The reason is twofold. First, a study presenting significant results
is more likely to be published than one presenting insignificant results. Second, a
published study yields higher rewards than an unpublished study.

Publication bias. Indeed, scientific journals prefer publishing significant results. Such
publication bias was first identified in psychology journals (Sterling 1959; Bozarth and
Roberts 1972; Ferguson and Brannick 2012). It has since been observed across the
social sciences (Card and Krueger 1995; Ashenfelter, Harmon, and Oosterbeek 1999;
Gerber, Green, and Nickerson 2001; Ashenfelter and Greenstone 2004; Rose and Stanley
2005; Christensen, Freese, and Miguel 2019), medical sciences (Simes 1986; Dickersin
et al. 1987; Begg and Berlin 1988; Song et al. 2000; Ioannidis and Trikalinos 2007; Dwan
et al. 2008), biological sciences (Csada, James, and Espie 1996; Jennions and Moeller
2002), and many other disciplines (Fanelli, Costas, and Ioannidis 2017). Andrews and
Kasy (2019, p. 2767) assess the magnitude of the bias in two literatures: experimental
economics and psychology. They find that results significant at the 5% level are 30 times
more likely to be published than insignificant results.

Rewards from publication. Publications, in turn, determine a scientist’s career path
(Smaldino and McElreath 2016). Publications lead of course to promotions (Skeels
and Fairbanks 1968), but also to a higher salary (Katz 1973; Siegfried and White 1973;
Tuckman and Leahey 1975; Hansen,Weisbrod, and Strauss 1978; Sauer 1988; Swidler and
Goldreyer 1998; Gibson, Anderson, and Tressler 2014). In some countries, scientists are
rewarded with cash bonuses as high as $30,000 for publications in top journals (Biagioli
and Lippman 2020, p. 6). Publications yield not only material rewards but also honorific
rewards (Hagstrom 1965). One such reward is eponymy, “the practice of affixing the
name of the scientist to all or part of what he has found” (Merton 1957). Beyond eponymy
are prizes, medals, memberships in academies of sciences, and fellowships in learned
societies (Merton 1957).

Rewards from significant results. Accordingly, scientists have the incentive to obtain
significant results by p-hacking. Formally, let V be the random variable giving the
rewards from a completed study. Randomness comes from several sources: the study
may not be published at all; or it may be published in one of many possible journals,
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from the most prestigious to the most obscure; even when it is published in a journal of
a given standing, the study’s impact may vary. The expected rewards from a study with
a significant result are

vs = E(V | significant),

and those from a study with an insignificant result are

vi = E(V | insignificant).

We assume that conditional on publication status, rewards are independent from statis-
tical significance. Then, using the law of total expectation, we find

vs = E(V | published) × P(published | significant)

+ E(V | unpublished) × P(unpublished | significant).

Since P(unpublished | significant) + P(published | significant) = 1, we obtain

vs =
[

E(V | published) – E(V | unpublished)
]

× P(published | significant)

+ E(V | unpublished).

Following the same logic, we find

vi =
[

E(V | published) – E(V | unpublished)
]

× P(published | insignificant)

+ E(V | unpublished).

Accordingly, by obtaining a significant result, a scientist expects to gain

vs – vi =
[

P(published | significant) – P(published | insignificant)
]

(A7)

×
[

E(V | published) – E(V | unpublished)
]
.

Empirically, significant results are more likely to be published than insignificant ones:

P(published | significant) > P(published | insignificant).

Moreover, a published study yields higher rewards than an unpublished one:

E(V | published) > E(V | unpublished).
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These facts together with (A7) imply that a scientist benefits more from a significant
result than from an insignificant one:

vs > vi .

B.3. Opportunities for p-hacking

Scientists have a lot of flexibility in data collection and analysis (Huntington-Klein et al.
2021). Such flexibility affords them opportunities to obtain significant results, even
when the null hypothesis is true. Indeed scientists have found that it is easy to obtain
significant results when the null hypothesis is true, without violating scientific norms
in biology (Cole 1957), medical science (Armitage 1967, section 4), economics (Leamer
1983; Lovell 1983), psychology (Simmons, Nelson, and Simonsohn 2011), and political
science (Humphreys, de la Sierra, and van der Windt 2013).
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Appendix C. Other p-hacking strategies

In the model of section II, scientists p-hack by repeatedly running experiments until
they reach significant results. In this appendix, we adapt the model to describe a wider
range of p-hacking strategies. We consider scientists who pool data across experiments,
successively remove outliers, successively examine different regression specifications,
and successively use different instruments. We find that the robust critical value (9)
remains useful under these other p-hacking strategies because it maintains the proba-
bility of type 1 error below the significance level. More generally, because the robust
critical value (9) is derived with independent test statistics, it controls the probability
of type 1 error for any p-hacking strategy that induces positive dependence across test
statistics. As such, the robust critical value (9) acts as a least-favorable robust critical
value over a range of p-hacking strategies.

C.1. General p-hacking strategy

P-hacking process. We begin by considering a general p-hacking process that produces
positively dependent test statistics.

ASSUMPTION A1. The sequence of test statistics T1,T2,T3, . . . is positively dependent:

(A8) P
(
T j > z | T1, . . . ,T j–1 ≤ z

)
≤ P

(
T j > z

)
= S(z)

for all j ≥ 2 and all z ≥ 0.

Type 1 error rate with positively dependent test statistics. We show that the robust critical
value (9) maintains the probability of type 1 error below the significance level even
when test statistics are positively dependent.

PROPOSITION A1. Under assumption A1, the probability of type 1 error under the robust
critical value (9) does not exceed the significance level.

PROOF. The proof proceeds as the proof of proposition 2, with some adjustments. First,
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we compute (A2) slightly differently:

P
(
R(z∗) > z∗

)
=

∞
∑
j=1

P
(
R(z∗) > z,N(z∗) = j

)
=

∞
∑
j=1

P(R(z∗) > z,N(z∗) = j ,N(z∗) > j – 1)
P(N(z∗) = j ,N(z∗) > j – 1)

· P
(
N(z∗) = j ,N(z∗) > j – 1

)
=

∞
∑
j=1

P(R(z∗) > z,N(z∗) = j | N(z∗) > j – 1)
P(N(z∗) = j | N(z∗) > j – 1)

· P
(
N(z∗) = j

)
.(A9)

The term P(R(z∗) > z,N(z∗) = j | N(z∗) > j – 1) in (A9) gives the probability that the
jth experiment can be completed and the jth test statistic is significant, given that the
previous j – 1 experiments could be completed and the previous j – 1 test statistics were
insignificant. Therefore,

(A10) P
(
R(z∗) > z∗,N(z∗) = j | N(z∗) > j – 1

)
= γP

(
T j > z

∗
| T1, . . . ,T j–1 ≤ z∗

)
.

The term P(N(z∗) = j | N(z∗) > j – 1) in (A9) gives the probability that the scientist
stops at the jth experiment, given that the previous j –1 experiments could be completed
and the previous j – 1 test statistics were insignificant. This event occurs either if the
jth experiment can be completed and the jth test statistic is significant, or if the jth
experiment cannot be completed. Therefore,

(A11) P
(
N(z∗) = j | N(z∗) > j – 1

)
= 1 – γ + γP

(
T j > z

∗
| T1, . . . ,T j–1 ≤ z∗

)
.

Combining (A10) and (A11), we obtain

P(R(z∗) > z∗,N(z∗) = j | N(z∗) > j – 1)
P(N(z∗) = j | N(z∗) > j – 1)

=
γP
(
T j > z∗ | T1, . . . ,T j–1 ≤ z∗

)
1 – γ + γP

(
T j > z∗ | T1, . . . ,T j–1 ≤ z∗

) .
The function x 7→ x/(1 – γ + x) is increasing in x > 0 for any γ < 1, and assumption A1
says that P

(
T j > z∗ | T1, . . . ,T j–1 ≤ z∗

)
≤ S(z∗). Thus, we have

(A12)
P(R(z∗) > z∗,N(z∗) = j | N(z∗) > j – 1)

P(N(z∗) = j | N(z∗) > j – 1)
≤

γS(z∗)
1 – γ + γS(z∗)

=
γS(z∗)

1 – γF(z∗)
.
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From (A9) and (A12), and given the fact that ∑
∞
j=1 P(N(z∗) = j) = 1, we infer that

P
(
R(z∗) > z∗

)
≤

γS(z∗)
1 – γF(z∗)

·
∞∑
j=1

P
(
N(z∗) = j

)
=

γS(z∗)
1 – γF(z∗)

.

Then using equation (A1), we obtain an upper bound on the probability of type 1 error:

S∗(z∗) ≤
S(z∗)

1 – γF(z∗)
.

But the critical value z∗ satisfies (8), so the right-hand side of the inequality is just
the significance level α. We conclude that the probability of type 1 error is below the
significance level: S∗(z∗) ≤ α.

Condition ensuring positive dependence of t-statistics. In the common case of sequential
z-tests or large-sample t-tests, a simple condition on the covariances between successive
test statistics guarantees that proposition A1 applies:

PROPOSITION A2. Suppose the sequence of test statistics are distributed as follows under
H0: (T1, . . . ,Tn) ∼ N(0,Ω(n)), where all the variances Ω1,1(n), . . . , Ωn,n(n) equal 1 and
all covariancesΩ1,n(n),. . . ,Ωn–1,n(n) are nonnegative. Then assumption A1 is satisfied so
proposition A1 applies.

PROOF. We show assumption A1 holds by showing the conditional probability on the
left-hand side of (A8) is less than the unconditional probability on the right-hand side
of (A8) after further conditioning on any realized value of an additional statistic.

Note that the normally distributed random vector

A(n) = [T1, . . . ,Tn–1] – [Ω1,n(n), . . . ,Ωn–1,n(n)]Tn

is independent of Tn since

cov(A(n),Tn) = cov
(
[T1, . . . ,Tn–1] – [Ω1,n(n), . . . ,Ωn–1,n(n)]Tn,Tn

)
= cov([T1, . . . ,Tn–1],Tn) – [Ω1,n(n), . . . ,Ωn–1,n(n)] var(Tn)

= [Ω1,n(n), . . . ,Ωn–1,n(n)] – [Ω1,n(n), . . . ,Ωn–1,n(n)]

= 0.
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Using the vector A(n), we describe the conditioning event in (A8) as follows:

{T1, . . . ,Tn–1 ≤ z} =
{
[Ω1,n(n), . . . ,Ωn–1,n(n)]Tn ≤ z – A(n)

}
=

{
Tn ≤ min

1≤ j≤n–1:Ω j ,n(n)>0

z – A j (n)
Ω j ,n(n)

, max
1≤ j≤n–1:Ω j ,n(n)=0

A j (n) ≤ z

}
.

Since A(n) and Tn are independent, the conditional distribution of the nth statistic
given the conditioning event in (A8) and the realized value of A(n) is a standard normal
truncated from above:

Tn |
{
T1, . . . ,Tn–1 ≤ z,A(n) = a

}
∼ ξ | ξ ≤ U(a),

where ξ ∼ N(0, 1) and

U(a) = min
1≤ j≤n–1:Ω j ,n(n)>0

z – a j
Ω j ,n(n)

.

Using the properties of the truncated normal distribution, we characterize the
conditional probability of type 1 error for the nth statistic given non-rejection by the
previous statistics in the sequence and the realized value of A(n) as

P(Tn > z | T1, . . . ,Tn–1 ≤ z,A(n) = a) =

1 –
Φ(z)

Φ(U(a)) if z ≤ U(a),

0 if z > U(a)

for all a, whereΦ denotes the cumulative distribution function of a standard normal
random variable. Therefore for any values of a and z,

P(Tn > z | T1, . . . ,Tn–1 ≤ z,A(n) = a) ≤ 1 –Φ(z).

But for FA equal to the cumulative distribution function of A(n),

P(Tn > z | T1, . . . ,Tn–1 ≤ z) =
∫

Rn–1
P(Tn > z | T1, . . . ,Tn–1 ≤ z,A(n) = a)dFA(a)

≤ 1 –Φ(z) = P(Tn > z)

and we obtain the statement of the proposition.

The intuition for the proofs is simple. The optimal p-hacking strategy described by
lemma 1 remains identical when the test statistics are dependent. Indeed, the derivation
of the optimal stopping time does not rely on the independence of the test statistics,
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so it remains valid here. The stochastic properties of the optimal stopping time and
reported test statistic do change, however. But under assumption A1, we can guarantee
that the robust critical value given by (9) keeps the probability of type 1 error below the
significance level.

P-hacking strategies generating positively dependent t-statistics. Thedistributional assump-
tion in proposition A2 is satisfied by the large-sample joint distribution of a sequence of
positively correlated t-statistics under the null hypothesis. Such positive correlation ap-
pears under several common forms of p-hacking. Suppose that the scientist constructs
a general estimator of the form

(A13) µ̂n =
∑
mn
j=1 XnjWnj

∑
mn
j=1 X

2
nj

at step n, wheremn is equal to the sample size used in step n. In the subsections that
follow, we show that several common estimators in applied work take the form of
(A13). Under standard moment conditions on two sets of mn approximately iid data
points (Xn1, . . . ,Xnmn) and (Wn1, . . . ,Wnmn), a bivariate central limit theorem implies
the following distributional approximation for largemn:

1
√
mn

 ∑
mn
j=1[XnjWnj – E(XnWn)]

∑
mn
j=1[X

2
nj – E(X2n)]

 ∼ N(0,Σn)

with

Σn =

(
E(X2nW2

n ) – E(XnWn)2 E(X3nWn) – E(X2n)E(XnWn)
E(X3nWn) – E(X2n)E(XnWn) E(X4n) – E(X2n)2

)
.

In turn, the delta method implies that for largemn,

(A14)
√
mn(µ̂n – µn) ∼ N(0,σ2n)

with

µn =
E(XnWn)

E
(
X2n
)

σ2n =
E
(
X2nW2

n
)

E
(
X2n
)3 – 2E

(
X3nWn

)
E
(
X2n
)

E(XnWn) + E
(
X4n
)

E(XnWn)2

E
(
X2n
)4 .
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By using an estimator of the form (A13), (A14) shows that the scientist is implicitly
testing the null hypothesis H0,n : µn = µ0,n at step n, where the estimand µn and its
hypothesized value µ0,n may differ across experiments n, depending upon the context.
Under standard moment conditions, the scientist can consistently estimate the large-
sample variances σ2n, by some estimator σ̂2n. This enables the formation of t-statistics
with standard normal distributions under H0,n in large samples:

Tn =
√
mn(µ̂n – µ0,n)

σ̂n
∼ N(0, 1).

As σ̂2i and σ̂2j are consistent for σ
2
i and σ2j ,

cov(Ti ,T j ) ≈

√mim j cov
(
µ̂i , µ̂ j

)
σiσ j

≥ 0

if and only if cov(µ̂i , µ̂ j ) ≥ 0. Thus, for estimators of the form (A13), the conditions of
proposition A2 hold in large samples when the standard normal approximation for each
Ti holds jointly with the others and cov(µ̂i , µ̂ j ) ≥ 0 for each i, j = 1, . . . ,n. Sections C.2,
C.3, C.4, and C.5 provide common examples of estimators for which these conditions
typically hold.

C.2. Pooling data

P-hacking process. The scientist studies a mean parameter µ = E(W ) for some random
variableW . The null hypothesis is H0 : µ = µ0. The alternative hypothesis is µ > µ0.
After each experiment the scientist adds the newly collected data to the existing dataset.
The new data are independent and collected from the same underlying population.
After experiment n the scientist constructs an estimate µ̂n of the parameter by taking a
mean from the pooled dataset:

(A15) µ̂n =
1
mn

mn∑
j=1

W j ,

wheremn is the size of the pooled dataset, andW1, . . . ,Wmn are iid random variables
with mean µ. Using the notation in (A13), we have Xnj = 1 andWnj = W j for all n and j .
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Verifying the conditions of proposition A2. Since the scientist accumulates data at each
step,mi > m j for all i > j . Hence, using (A15) for i ≥ j , we obtain

cov(µ̂i , µ̂ j ) =
1

mim j

m j∑
r=1

mi∑
k=1

cov(Wr,Wk) =
var(W )
mi

≥ 0.

Hereweused the assumption thatW1, . . . ,Wmn are iid, so cov(Wr,Wk) = 0 for all r ̸= k and
cov(Wr,Wr) = var(W ) for all r. Furthermore, any finite set of µ̂i ’s have an approximate
joint normal distribution in large samples by a standard multivariate central limit
theorem. Therefore, the conditions of proposition A2 are satisfied when the scientist
p-hacks by pooling data.

C.3. Removing outliers

P-hacking process. The scientist successively removes outliers from a dataset of sizem.
At step n, the scientist discards all data points further away than some value cn from
some value χ. She discards more data points at each step so that cn < cq for n > q. In this
scenario, at step n the scientist constructs an estimate µ̂n of the parameter by taking a
mean from the trimmed sample:

(A16) µ̂n =
∑
m
j=1W j 1(|W j – χ| ≤ cn)

∑
m
j=1 1(|W j – χ| ≤ cn)

,

where 1 denotes the indicator function, andW1, . . . ,Wm are iid random variables. The
scientist is implicitly testing a different null hypothesisH0,n : µn = µ0,n at each step n in
this example, where

µn =
E(W 1(|W – χ| ≤ cn))

P(|W – χ| ≤ cn)
.

Using the notation in (A13), we have Xnj = 1(|W j – χ| ≤ cn),Wnj = W j andmn = m for all
n and j .

Verifying the conditions of proposition A2. Any finite set of ∑
m
j=1W j 1(|W j – χ| ≤ ci)’s and

∑
m
j=1 1(|W j – χ| ≤ ci)’s have an approximate joint normal distribution in large samples

so that the delta method implies the same for any finite set of µ̂i ’s in this example. In
addition, the joint normality of the µ̂i ’s and the delta method provide the approximate
covariance between any µ̂i and µ̂ j in large samples, as the following proposition shows:
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PROPOSITIONA3. For µ̂n defined by (A16) and a sequenceW1, W2, . . . of iid random variables,
for any i ≥ j , m cov(µ̂i , µ̂ j ) converges to

var
(
W | |W – χ| ≤ ci

)
+ E
(
W | |W – χ| ≤ ci

)
E
(
W | |W – χ| ≤ c j

)
P
(
|W – χ| > ci

)
P
(
|W – χ| > c j

)
P
(
|W – χ| ≤ c j

)
as m → ∞.

PROOF. A multivariate central limit theorem and the delta method imply

m cov
(
µ̂i , µ̂ j

)
→

cov
(
W 1(|W – χ| ≤ ci),W 1(|W – χ| ≤ c j )

)
P
(
|W – χ| ≤ ci

)
P
(
|W – χ| ≤ c j

)
–

E
(
W 1(|W – χ| ≤ c j )

)
cov
(
W 1(|W – χ| ≤ ci), 1(|W – χ| ≤ c j )

)
P
(
|W – χ| ≤ ci

)
P
(
|W – χ| ≤ c j

)2
–

E
(
W 1(|W – χ| ≤ ci)

)
cov
(
W 1(|W – χ| ≤ c j ), 1(|W – χ| ≤ ci)

)
P
(
|W – χ| ≤ c j

)
P
(
|W – χ| ≤ ci

)2
+

E
(
W 1(|W – χ| ≤ ci)

)
E
(
W 1(|W – χ| ≤ c j )

)
cov
(

1(|W – χ| ≤ c j ), 1(|W – χ| ≤ ci)
)

P
(
|W – χ| ≤ c j

)2
P
(
|W – χ| ≤ ci

)2
as m → ∞. Next we use the definition of covariance, the fact that for f (w) = w or
f (w) = w2,

E
(
f (W ) | |W – χ| ≤ ci

)
=

E
(
f (W ) 1(|W – χ| ≤ ci)

)
P
(
|W – χ| ≤ ci

) ,

and the result that since ci < c j ,

1(|W – χ| ≤ ci) 1(|W – χ| ≤ c j ) = 1(|W – χ| ≤ ci).

From these and standard algebra, we obtain the result of the proposition.

The proposition shows when the conditions of proposition A2 should hold in large
samples. For example, the conditions hold if E(W | |W – χ| ≤ ci) and E(W | |W – χ| ≤

c j ) have the same sign. This latter condition should hold for reasonable removals of
outliers—that is, for reasonable choices of χ and c1, c2, c3, . . .. For example, suppose
that outliers are considered based on deviations from the mean, so E(W ) = χ. Then if
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W is symmetrically distributed, this condition holds for any choice of cn since E(W |

|W – χ| ≤ cn) = χ.

C.4. Examining various regression specifications

P-hacking process. The scientist uses ordinary least squares in the standard linear
regression model to estimate an effect of interest. A typical effect of interest would be
the population value of a regression coefficient. The scientist uses different regression
specifications at each p-hacking step, so the parameter of interest differs at each step.
Specifically, at step n the scientist uses ordinary least squares to estimate a regression
coefficient in a regression ofWn on Xn from two sets ofm iid data points (Wn1, . . . ,Wnm)
and (Xn1, . . . ,Xnm) so

(A17) µ̂n =
∑
m
j=1 XnjWnj

∑
m
j=1 X

2
nj

.

Here, Xn represents the regressor of interest after it has been projected off of the space
spanned by the covariates included in the nth regressionmodel, following the procedure
described in the Frisch-Waugh-Lovell theorem.

Verifying the conditions of proposition A2. The least squares estimator in (A17) takes the
structure of (A13) withmn = m for all n and therefore satisfies (A14) when, for example,
Wn and Xn have finite fourth moments. In this context, the conditions of proposition
A2 therefore hold if cov(µ̂i , µ̂ j ) ≥ 0 for each i, j = 1, . . . ,n, a natural condition for a set
of similar regressions. For example, consider two different regressions generating the
data

Wi = µiXi + ui
W j = µ jX j + u j

that satisfy standard assumptions such that the least squares estimators of µi and µ j , µ̂i
and µ̂ j , are jointly asymptotically normally distributed asm → ∞ and centered at µi
and µ j with a

√
m rate of convergence. In this case,

m cov
(
µ̂i , µ̂ j

)
→

E
(
uiu jXiX j

)
E
(
X2i
)

E
(
X2j
) ,
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which is nonnegative if and only if E(uiu jXiX j ) ≥ 0. This condition naturally holds when
the regressors Xi and X j and regressands Wi and W j measure similar quantities. In
other words, if the scientist estimates similar population regression coefficients at each
p-hacking step, the coefficient estimates should be expected to be positively correlated
in large samples. This is easiest to see when E(uiu j | X jX j ) = E(uiu j ) (akin to conditional
homoskedasticity) since then E(uiu jXiX j ) = cov(ui ,u j ) cov(Xi ,X j ) if an intercept is
included in the regression. In this case, cov(µ̂i , µ̂ j ) ≥ 0 in large samples if both ui and
u j and Xi and X j are positively correlated.

The condition cov(µ̂i , µ̂ j ) ≥ 0 is also testable from observed data. The delta method
allows one to compute the approximate covariances between any two µ̂i , µ̂ j in large
samples for any choices ofWi and Xi . Proposition A3 is an example of such an exercise.

C.5. Examining various instruments

By modifying some of the definitions in the previous example, we can also cover the
case in which the scientist uses two-stage least squares to estimate the effect of interest.
Assuming that the instruments are both strong and valid, we can modify the definition
of Xn to equal the regressor of interest after all regressors have been projected onto the
space spanned by the instruments used at the nth p-hacking step, and then the resulting
regressor of interest has been projected off of the space spanned by the covariates
included in the nth regression model. If the scientist uses the same dependent variable
and second stage covariates at each step and only changes the set of instruments used,
and if the regression model is correctly specified, the null hypotheses are identical at
each step since each µn equals the true second stage regression coefficient.
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Appendix D. P-hacking with cost of doing research

This appendix introduces a cost of doing research into the model of section II. This cost
is incurred by the scientist at each new experiment. We find that the robust critical
value is not modified by this extension.

D.1. Assumptions

The scientist incurs a cost of doing research c > 0 at each experiment. The cost could be
monetary or psychological. Because we focus on fields in which research occurs, we
assume that c is low enough relative to the rewards from research, vi and vs, such that
it is optimal for scientists to engage in research.

D.2. Optimal stopping time and robust critical value

Significant result. Since it is optimal to engage in research, the scientist starts a first
experiment. With probability γ, the experiment can be completed, and the scientist
obtains a test statistic. If the statistic is significant, the scientist obtains vs, so she stops
immediately. Indeed, she cannot obtain a higher payoff by continuing. The same is true
in the future too: any time a scientist obtains a significant result, she immediately stops,
since it is impossible to obtain a higher payoff later on.

High research cost. What does the scientist decide if the test statistic is insignificant?
It depends on the research cost c. If the cost is high enough, the scientist stops right
away. This happens when the possibility of obtaining a significant result in the future
does not compensate the research cost. In that case, the scientist does not p-hack: she
conducts one experiment and stops, irrespective of the result. The robust critical value
is then the classical critical value.

Low research cost. Since p-hacking is prevalent in reality, the most realistic scenario
is that the research cost c is low enough so that the scientist runs a new experiment
upon obtaining an insignificant result. In that case, because the scientist faces exactly
the same situation after each experiment, the scientist continues p-hacking until she
obtains a significant result.

18



Summary. If the research cost is low enough that p-hacking occurs, the presence of
the research cost does not modify the scientist’s behavior. It is optimal for the scientist
to p-hack until she reaches a significant result. Accordingly, everything remains the
same in the model—including the robust critical value.

D.3. Computing the cost boundaries

We now compute the expected payoffs from doing research, the cost below which it is
optimal to p-hack, and the cost below which it is optimal to engage in research. The
expectations of the payoffs depend on the distribution of the test statistic, which in turn
depends on which hypothesis is true. We assume that the scientist is conservative and
computes the payoff expectations under the null hypothesis.

Continuation value of research. We first compute the continuation value of research for
a scientist who has already recorded an insignificant result. We denote the value V i .
Because the scientist’s situation is invariant in time, the continuation value is the same
at each experiment. When a scientist decides to continue p-hacking, three scenarios
are possible. With probability 1 – γ, the scientist cannot complete the experiment and
must submit an insignificant result. She then collects vi . With probability γ, she can
complete the experiment. Then with probability S(z∗), her result is significant and she
collects vs. With probability 1 – S(z∗), her result is insignificant once again and the
continuation value at this point is V i . In any case, she incurs a cost c to conduct the
experiment. Aggregating the scenarios, we obtain the following continuation value:

V i = (1 – γ)vi + γS(z∗)vs + γ[1 – S(z∗)]V i – c.

Hence the continuation value is

(A18) V i =
(1 – γ)vi + γS(z∗)vs – c

1 – γ[1 – S(z∗)]
.

Condition for p-hacking. We now compute the cost below which it is optimal to p-hack.
When a scientist has obtained one insignificant result, it is optimal to continue p-hacking
if V i > vi . Using (A18), we rewrite the condition as

c < γS(z∗)(vs – vi).
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Hence, it is optimal to p-hack if the cost of each experiment c is below the threshold

cp = γS(z∗)(vs – vi).

Of course, the cost threshold is higher when significant results are more rewarded
relative to insignificant results.

Condition for research. From the continuation value (A18), we also compute the cost
below which it is optimal to engage in research. Given that we have normalized the
outside option of the scientist to 0, it is optimal to engage in research if the expected
value from it is positive.

When a scientist decides to start research, three scenarios are again possible. With
probability 1 – γ, the scientist cannot complete the first experiment and cannot submit
any result; she then collects 0.With probability γ, she can complete the first experiment.
Then with probability S(z∗), her result is significant and she collects vs. With probability
1 – S(z∗), her result is insignificant and the continuation value at this point is V i . In any
case, she must incur a cost c to conduct the experiment.

Aggregating the scenarios, we obtain the initial continuation value:

V r = (1 – γ) × 0 + γS(z∗)vs + γ[1 – S(z∗)]V i – c.

We rewrite the initial continuation value as

V r = γV i + γS(z∗)(vs – V i) – c.

Using the value of V i given by (A18), we finally obtain

V r =
γS(z∗)

1 – γ[1 – S(z∗)]
vs +

(1 – γ)γ[1 – S(z∗)]
1 – γ[1 – S(z∗)]

vi –
1

1 – γ[1 – S(z∗)]
· c.

It is optimal to start a research project if V r > y0 = 0. This condition becomes

c < γS(z∗)vs + (1 – γ)γ[1 – S(z∗)]vi .

Hence, it is optimal to start research if the cost of each experiment is below the threshold

cr = γS(z∗)vs + (1 – γ)γ[1 – S(z∗)]vi .
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The threshold to engage in research is higher than the threshold to engage in p-hacking:

cr = cp + γ[1 – γ(1 – S(z∗))] > cp.

Hence, for all costs between cp and cr, scientists engage in research but do not p-hack.
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Appendix E. P-hacking with time discounting

This appendix introduces time discounting into the model of section II. When the
scientist discounts the future, a result submitted early is more valuable than the same
result submitted later. We find that the robust critical value is not modified by this
extension.

E.1. Assumptions

The scientist discounts the future with a discount factor δ ∈ (0, 1). Time discounting
occurs at each new experiment, so the value of a result obtained at experiment n is
discounted by δn. Because all the possible payoffs from research are positive (either
0 or vi > 0 or vs > 0), the expected present discounted value from research is strictly
positive, irrespective of the strength of discounting. Accordingly, it is optimal for the
scientist to engage in research for any discount factor.

E.2. Optimal stopping time and robust critical value

Significant result. The scientist stops p-hacking whenever she obtains a significant
result. This is because it is impossible to obtain a higher payoff in the future, and
furthermore future payoffs are discounted.

Low discount factor. What does the scientist decide if the result is insignificant? It
depends on the discount factor. If the discount factor is close enough to 0, the scientist
is better off stopping right away. This happens when the possibility of obtaining a
significant result in the future does not compensate for time discounting. In that case,
the scientist does not p-hack: she conducts one experiment and stops, irrespective of
the result. The appropriate critical value is then the classical critical value.

High discount factor. P-hacking is prevalent in reality. Thus, the most realistic scenario
is that the discount factor is close enough to 1 that the scientist starts a new experiment
upon obtaining an insignificant result. Then the scientist continues p-hacking until she
obtains a significant result, because she faces the same situation after each experiment.

Summary. If the discount factor is high enough that p-hacking occurs, the presence of
discounting does not modify the scientist’s behavior. It is optimal for the scientist to
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p-hack until she reaches a significant result. Accordingly, everything remains the same
in the model—including the robust critical value.

E.3. Computing the discount-factor boundary

Given that the properties of the model remain the same with discounting, we can use
previous results to compute the discount factor above which it is optimal to p-hack.

Continuation value of research. The key step is computing the continuation value of
research for a scientist who has already recorded an insignificant result. We denote the
value V i . Because the scientist’s situation is invariant in time, the continuation value
is the same at each new experiment. When a scientist decides to continue p-hacking,
three scenarios are possible. With probability 1 – γ, the scientist cannot complete
the new experiment and must submit an insignificant result; she then collects δvi .
With probability γ, she can complete the new experiment. Then with probability S(z∗),
her result is significant and she collects δvs. With probability 1 – S(z∗), her result is
insignificant once again and the continuation value is δV i . Aggregating the scenarios,
we obtain the following continuation value:

V i = (1 – γ)δvi + γS(z∗)δvs + γ[1 – S(z∗)]δV i .

Hence the continuation value is

(A19) V i = δ
(1 – γ)vi + γS(z∗)vs

1 – δγ[1 – S(z∗)]
.

Condition for p-hacking. When a scientist has obtained an insignificant result, it is
optimal to p-hack if V i > vi . Using (A19), we rewrite the condition as

δ >
vi

vi + γS(z∗)(vs – vi)
.

Hence, it is optimal to p-hack if the discount factor δ is above the threshold

δp =
vi

vi + γS(z∗)(vs – vi)
∈ (0, 1).
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If insignificant results are not rewarded at all (vi = 0), then scientists p-hack under any
discount factor (δp = 0). If insignificant results are rewarded (vi > 0), then scientists
p-hack under a broader range of discount factors when significant results are more
rewarded relative to insignificant results (δp is lower when vs – vi is higher).
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Appendix F. P-hacking with increasingly difficult experiments

This appendix extends the model of section II by assuming that experiments become
successivelymoredifficult to conduct, and therefore less likely to be completed.We show
that for any decreasing completion probability, the robust critical value (9) maintains
the probability of type 1 error below the significance level.

F.1. Assumptions

The experiments become increasingly difficult to run. Therefore, the resources re-
quired for each experiment, D1,D2 –D1,D3 –D2, . . ., are independent but not identically
distributed. Instead, the amount of resources required for each experiment is increas-
ing, so the probability of completing an experiment before resources are exhausted is
decreasing. Formally, the probability of completing the first experiment is

γ1 = P(D1 < L) = E( exp(–λD1)),

and the probability of completing the nth experiment is

(A20) γn = P(Dn < L | Dn–1 < L) = E( exp(–λ[Dn – Dn–1])).

We set γ1 = γ. To capture the increasing difficulty of running experiments, we assume
that the sequence γ1,γ2,γ3, . . . is decreasing. Accordingly, γn ≤ γ for any n.1

F.2. Optimal stopping time

Even with increasingly difficult experiments, it is optimal for the scientist to p-hack
until she reaches a significant result. First, it remains optimal for the scientist to engage
in research because all the possible payoffs from research are positive. Second, it is
optimal for the scientist to continue p-hacking when she obtains an insignificant result
because she can only obtain equal or higher payoffs in the future. Third, it is optimal
for the scientist to stop p-hacking when she obtains a significant result because it is
impossible to obtain a higher payoff in the future.

1To obtain (A20), we note that the resource limit L is exponentially distributed with rate λ, and that the
exponential distribution is memoryless, so P(L > dn | L > dn–1) = P(L > dn – dn–1) = exp(–λ[dn – dn–1]) for
any dn > dn–1 > 0.
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F.3. Probability of type 1 error

We now compute the probability of type 1 error under the critical value z∗ given by (9).
Given that the scientist’s behavior remains the same as in the basic model, we follow
the same steps as in the proof of proposition 2.

Probability of reporting a significant result at experiment j. All the steps of the proof
of proposition 2 remain valid until we reach (A4). The probability that experiment j
is completed given that j – 1 experiments have already been completed is γ j ≤ γ. So
equation (A4) becomes

P
(
R(z∗) > z∗,N(z∗) = j | N(z∗) > j – 1

)
= γ jS(z

∗) ≤ γS(z∗).

As a result, equation (A5) is modified:

(A21) P
(
R(z∗) > z∗

)
=

∞∑
j=1

γ jS(z
∗)P(N(z∗) > j – 1) ≤ γS(z∗) ·

∞∑
j=0

P(N(z∗) > j).

Probability of completing more than j experiments. For j = 0, we have P(N(z∗) > j) =
1. For j ≥ 1, the term P(N(z∗) > j) gives the probability that the scientist conducts
strictly more than j experiments. This event happens if the first j experiments could be
completed, which occurs with probability ∏

j
k=1 γk ≤ γ j , and if the first j test statistics

were insignificant, which occurs with probability F(z∗) j . For any j ≥ 0, we therefore
have

P(N(z∗) > j) ≤ γ jF(z∗) j ,

which implies

(A22)
∞∑
j=0

P(N(z∗) > j) ≤

∞∑
j=0

γ jF(z∗) j =
1

1 – γF(z∗)
.

Bounding the probability of type 1 error. Combining equations (A21) and (A22), we obtain

P
(
R(z∗) > z∗

)
≤

γS(z∗)
1 – γF(z∗)

.
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Then using equation (A1), we bound the probability of type 1 error:

S∗(z∗) ≤
S(z∗)

1 – γF(z∗)
.

But the critical value z∗ satisfies (8), so the right-hand side of the inequality is just the
significance level α. We conclude that the probability of type 1 error is less than the
significance level:

S∗(z∗) ≤ α.
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