P-hacking is prevalent in reality but absent from classical hypothesis testing theory. As a consequence, significant results are much more common than they are supposed to be when the null hypothesis is in fact true. In this paper, we build a model of hypothesis testing with p-hacking. From the model, we construct critical values such that, if the values are used to determine significance, and if scientists’ p-hacking behavior adjusts to the new significance standards, significant results occur with the desired frequency. Such robust critical values allow for p-hacking so they are larger than classical critical values. To illustrate the amount of correction that p-hacking might require, we calibrate the model using evidence from the medical sciences. In the calibrated model the robust critical value for any test statistic is the classical critical value for the same test statistic with one fifth of the significance level.

Figure 3: Critical values robust to p-hacking for z-tests


McCloskey, Adam, and Pascal Michaillat. 2023. “Critical Values Robust to P-hacking.” arXiv:2005.04141. .

author = {Adam McCloskey and Pascal Michaillat},
doi = {10.48550/arXiv:2005.04141},
note = {arXiv:2005.04141},
title = {Critical Values Robust to P-hacking},
year = {2023}}